US009705848B2

a2 United States Patent

Cullimore et al.

US 9,705,848 B2
*Jul. 11, 2017

(10) Patent No.:
45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

ULTRA-SMALL, ULTRA-LOW POWER
SINGLE-CHIP FIREWALL SECURITY
DEVICE WITH TIGHTLY-COUPLED
SOFTWARE AND HARDWARE

Inventors: Ian Henry Stuart Cullimore,
Leominster (GB); Jeremy Walker,
Redwood City, CA (US)

Assignee: IOTA Computing, Inc., Palo Alto, CA

Us)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/333,824

Filed: Dec. 21, 2011

Prior Publication Data

US 2013/0061283 Al Mar. 7, 2013

Related U.S. Application Data

Continuation of application No. 13/225,233, filed on
Sep. 2, 2011, now Pat. No. 8,875,276.

Int. CL.

GO6F 17/00 (2006.01)

HO4L 29/06 (2006.01)

GO6F 1/32 (2006.01)

U.S. CL

CPC ... HO04L 63/0209 (2013.01); HO4L 63/0227

(2013.01); GO6F 1/3237 (2013.01)

Field of Classification Search
CPC . HO4L 63/0227; HO4L 63/0209; HO4L 67/12;
HO4L 69/26;, GO6F 21/566;

(56) References Cited
U.S. PATENT DOCUMENTS
5,469,553 A 11/1995 Patrick
5,493,689 A 2/1996 Waclawsky et al.
(Continued)
FOREIGN PATENT DOCUMENTS
CN 1622517 *6/2005 GOGF 3/00
EP 1213892 6/2002
(Continued)

OTHER PUBLICATIONS

Quan Huang et al. : “En embedded firewall based on network
processor”, 2005, IEEE, Proceedings of the Second International
Conference on Embedded Software and Systems (ICESS’05), 7
pages.*

(Continued)

Primary Examiner — Catherine Thiaw
(74) Attorney, Agent, or Firm — Carr & Ferrell LLP

(57) ABSTRACT

A firewall security device, system and corresponding
method are provided that includes an operating system of an
entirely new architecture. The operating system is based
fundamentally around a protocol stack (e.g., TCP/IP stack),
rather than including a transport/network layer in a conven-
tional core operating system. The firewall security device
may include a processor and an operating system (OS)
embedded in the processor. The OS may include a kernel.
The operating system kernel is a state machine and may
include a protocol stack for communicating with one or
more devices via a network interface. The OS may be
configured to receive and transmit data packets and block
unauthorized data packets within one or more layers of the
protocol stack based on predetermined firewall policies.

HARDWARE
126

(Continued) 20 Claims, 8 Drawing Sheets
100
| T T T T T T | P
[110 |
: EDGE DEVICE :
I I
[|
I I
| 120 |
| FIREWALL SECURITY |
| DEVICE |
| APPLICATIONS |
| 22 |
| OPERATING SYSTEM
124 |
! I
! I
! I

140

NETWORK

130 A 1308

CLIENT DEVICE

CLIENT DEVICE

130 ¢
CLIENT DEVICE

US 9,705,848 B2
Page 2

(58) Field of Classification Search

CPC ... GOG6F 9/54; GOGF 21/554; GOGF 1/3203;
GOGF 21/3237; GOGF 1/3237
USPC i 726/11-13

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,710,910 A 1/1998 Kehl et al.

5,826,014 A * 10/1998 Coley GO06Q 20/027
726/12

5,896,499 A * 4/1999 McKelveycoen. 726/11

5,968,133 A * 10/1999 Latham et al. . 709/248

6,279,113 B1* 82001 Vaidya 726/23

6,587,884 B1* 7/2003 Papadopoulos et al. 709/230

6,714,536 Bl 3/2004 Dowling

6,851,061 B1* 2/2005 Holland et al. 726/23
7,002,979 Bl 2/2006 Schneider et al.

7,036,064 Bl 4/2006 Kebichi et al.

7,055,173 B1* 5/2006 Chaganty et al. 726/11

7,076,803 B2* 7/2006 Bruton et al. 726/23
7,246,272 B2* 7/2007 Cabezas et al. 714/53
7,308,686 B1 12/2007 Fotland et al.

7,328,158 Bl 2/2008 Burridge et al.

7,333,437 B1* 2/2008 Glick 370/236

7,334,124 B2* 2/2008 Phametal. ... 713/162

7,363,369 B2 4/2008 Banerjee et al.

7,424,710 Bl 9/2008 Nelson et al.

7490,350 B1* 2/2009 Murotake GO6F 21/85
726/11

7,509,673 B2* 3/2009 Swander et al. 726/11

7,568,030 B2 7/2009 Banerjee et al.

7,657,933 B2 2/2010 Hussain et al.

7,694,158 B2 4/2010 Melpignano et al.

7,734,933 Bl 6/2010 Marek et al.

7,770,179 Bl 8/2010 James-Roxby et al.

7,886,340 B2* 2/2011 Carleyccccovvvrcnnnenne. 726/3
8,055,822 B2 11/2011 Bernstein et al.

8,132,001 B1* 3/2012 Patten et al. 713/164
8,335,864 B2* 12/2012 Cullimorecccon.... 709/250
8,607,086 B2 12/2013 Cullimore

8,875,276 B2 10/2014 Cullimore et al.

8,904,216 B2 12/2014 Cullimore

9,436,521 B2 9/2016 Cullimore

2002/0007420 Al
2002/0010800 Al*

1/2002 Eydelman et al.

1/2002 Rileyccccenee. HO4L 63/0218
709/249

2002/0167965 Al

2003/0084190 Al

2003/0204639 Al

11/2002 Beasley et al.
5/2003 Kimball
10/2003 Lake et al.
2004/0049624 Al 3/2004 Salmonsen
2004/0093520 Al* 5/2004 Leeetal. ...cccoeeevnnnn. 713/201
2004/0143751 Al* 7/2004 Peikari 713/200
2004/0210320 Al 10/2004 Pandya
2004/0225805 Al 11/2004 Vasudevan
2004/0249957 Al 12/2004 Ekis et al.
2005/0021712 Al* 1/2005 Chassapis et al. 709/223
2005/0097226 Al 5/2005 Tripathi

2005/0193137 Al* 9/2005 Farnham 709/230

2005/0193173 Al 9/2005 Ring et al.

2005/0240993 Al* 10/2005 Treadwell GOG6F 21/55
726/13

2005/0267930 Al 12/2005 Wybenga et al.

2006/0026162 Al 2/2006 Salmonsen et al.

2006/0070122 Al* 3/2006 Bellovin HO4L 63/0236
726/14

2006/0123123 Al

2006/0133370 Al

2006/0251072 Al

2007/0008976 Al

2007/0022421 Al

6/2006 Kim et al.

6/2006 Eldar
11/2006 Hendel et al.

1/2007 Meenan

1/2007 Lescouet et al.
2007/0118596 Al 5/2007 Patiejunas
2007/0211633 Al 9/2007 Gunawardena et al.
2007/0255861 Al* 11/2007 Kain et al.cccoovevrnenn. 710/8
2007/0294512 Al 12/2007 Crutchfield et al.
2008/0046891 Al 2/2008 Sanchorawala et al.

2008/0109665 Al* 5/2008 Kuhlmann et al. 713/300

2008/0134330 Al* 6/2008 Kapoor et al. 726/22

2008/0177756 Al 7/2008 Kosche et al.

2008/0222309 Al* 9/2008 Shanbhogue GO6F 21/53
709/250

2008/0271035 Al 10/2008 Yasukawa

2008/0288666 Al* 11/2008 Hodges et al. 710/9

2009/0126003 Al 5/2009 Touboul

2009/0158299 Al 6/2009 Carter

2009/0217020 Al 8/2009 Yourst

2009/0235263 Al 9/2009 Furukawa

2009/0325615 Al* 12/2009 McKay ..o HO4L 63/02
455/466

2010/0005323 Al

2010/0115116 Al

2010/0131729 Al*

2010/0185719 Al

2010/0192225 Al*

2011/0002184 Al1*

2011/0088037 Al*

2011/0107357 Al

2011/0156872 Al1*

1/2010 Kuroda et al.

5/2010 Asnaashari

5/2010 Fulcheri et al. 711/163

7/2010 Howard

7/2010 Maetal. ..ooooovvrireernnnn 726/23

1/2011 Kim ... 365/207

4/2011 Glistvainc.ooveenne 718/103

5/2011 Cullimore

6/2011 Wengrovitz H04W 4/008
340/10.1

2012/0017262 Al* 1/2012 Kapoor et al. ... 726/1

2012/0042088 Al 2/2012 Cullimore

2012/0255031 Al* 10/2012 Sallamcccceevvvrneen.. 726/27

2013/0061070 Al 3/2013 Cullimore

2013/0061078 Al 3/2013 Cullimore

2013/0061313 Al 3/2013 Cullimore et al.

FOREIGN PATENT DOCUMENTS

EP 1484887 A2
EP 2497003

EP 2751700 Al 7/2014
EP 2751701 A2 7/2014
™ 200924424 *6/2009
WO W02011056808 5/2011
WO WO02013032660 3/2013
WO WO02013032661 3/2013

12/2004
9/2012

............. HO4L 12/26

OTHER PUBLICATIONS

T. K. Kan, A. A Raghunathan and N.K. Jha: “A simulation frame-
work for energy-consumption analysis of OS-driven embedded
applications”, IEEE, vol. 22, No. 9, Sep. 2003.*

Jiang Min ‘A design of embedded terminal unit based on ARM and
Windowa CE’, ICEMI, 8th International Conference on Electronic
Measurement and Instruments, 2007, pp. 2-336 to 2-340.*

Wang et al., ‘A survey of embedded operating system’, 2001,
ceit.aut.ac.ir.*

Linfo : ‘Embedded system definition’, Linux Information Project,
2006.*

Adam Dunkels, Bjorn Gronvall, Thiemo Voigt: “Contiki: a Light-
weight and Flexible Operating System for Tiny Networked Sen-
sors”, 29th Annual IEEE International Conference on Local Com-
puter Networks, 2004, 8 pages.*

S. Haldar and A. Aravind “Operating Systems”, Pearson India,
2009, 612 pages.*

Norman C. Hutchinson and Larry L. Peterson: “The x-kernel: an
architecture for implementing network pprotocols” , IEEE Trans-
actions on Software Engineering, vol. 17, No. 1, Jan. 1991, 13
pages.*

Technopedia: “Kernel” retrieved from https://www.techopedia.com/
definition/3277/kernel on Jul. 1, 2016, 2 pages.*

Bathen et al. “Inter and Intra Kernel Reuse Analysis Driven Pipelin-
ing on Chip-Multiprocessors,” Intemational Symposium on VLSI
Design, Automation and Test, Apr. 26-29, 2010. p. 203-207.
[Accessed Feb. 16, 2011—IEEExplore] http://ieeexplore.icee.org/
xpis/abs all.jsp?arnumber=5496725.

Bolchini et al. “Smart Card Embedded Information Systems: A
Methodology for Privacy Oriented Architectural Design,” Data &
Knowledge Engineering, 2002. vol. 41, No. 2-3, p. 159-182.
[Accessed Feb. 16, 2011—ScienceDirect.com].

US 9,705,848 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Ferrante et al. “Application—Driven Optimization of VLIW Archi-
tectures: A Hardware—Software Approach,” 11th IEEE Real Time
and Embedded Technology and Applications Symposium, Mar.
7-10, 2005. p. 128-137. [Accessed Feb. 15, 2011—IEEExplore]
http://ieeexplorejeee.org/xpls/abs_ all.jsp?arnumber=1388380.
Green Hills Software, “1-I-velOSityTM Real-Time Microkemel,”
Accessed on Feb. 16, 2011 at http://www.ghs.com/products/micro__
velosity. html.

Green Hills Software, Inc.,
2006.

Hattori. “Challenges for Low-Power Embedded SOC’s,” Interna-
tional Symposium on VLSI Design, Automation and Test, Apr.
25-27,2007. p. 1. [Accessed Feb. 16, 2011—IEEExplore] http://
ieeexplore.icee.org/xpis/abs_ all.jsp?arnumber=4239406.

Joumal of Techonology & Science, “Express Logic, Inc.; Express
Logic and IAR Systems Team Up to Provide ThreadX RTOS
Support in IAR Embedded Workbench IDE for Freescale ColdFire,”
Accessed on Feb. 16, 2011 at http://proquest.umi.com.mutex.gmu.
edu/pcidweb?index=7 &did=1541305

Kakarountas et al. “Implementation of HSSec: A High-Speed Cryp-
tographic Co-Processor,” IEEE Conference on Emerging Technolo-
gies and Factory Automation, Sep. 25-28,2007. p. 625-631.
[Accessed Feb. 16, 2011—IEEExplore] http://iceexplore.ieee.org/
xpls/abs__all jsp?arnumber=4416827.

Ke et al. “Design of PC/1 04 Processor Module Based on ARM,”
International Conference on Electrical and Control Engineering,
Jun. 25-27, 2010. p. 775-777. [Accessed Feb. 17, 2011—
IEEExplore] http://ieeexplore.ieee.org/xpis/abs_ all.
jsp?arnumber=5630566.

Kinebuchi et al. “A Hardware Abstraction Layer for Integrating
Real-Time and General-Purpose with Minimal Kernel Modifica-
tion,” Software Technologies for Future Dependable Distributed
Systems, Mar. 17, 2009. p. 112-116. [Accessed Feb. 16, 2011—
IEEExplore] http://ieeexplore.ieee.org/xpls/abs_ all.
jsp?arnumber=4804582.

Tabari, et al. “Neural Network Processor for a FPGA-based
Multiband Fluorometer Device,” International Workshop on Com-
puter Architecture for Machine Perception and Sensing, Aug. 18-20,
2006. p. 198-202. [Accessed Feb. 16, 2011—IEEExplore] http://
ieeexplore.icee.org/xpls/abs_ all.jsp?arnumber=4350381.

Nguyen et al. “Real-Time Operating Systems for Small
Microcontrollers,” IEEE Micro, Sep.-Oct. 2009. vol. 29, No. 5, p.
30-45. [Accessed Feb. 15, 2011—IEEExplore] http://ieeexplore.
ieee.org/xpis/abs__ all jsp?arnumber=5325154.

Ashkenazi et al. “Platform Independent Overall Security Architec-
ture in Multi-Processor System-On-Chip ICs for Use in Mobile
Phones and Handheld Devices,” World Automation Congress, Jul.
24-26, 2006. [Accessed Feb. 18, 2011—Engineering Village].
Bathen et al. “Inter and Intra Kernel Reuse Analysis Driven Pipelin-
ing on Chip-Multiprocessors,” International Symposium on VLSI
Design, Automation and Test, Apr. 26-29, 2010. p. 203-206.
[Accessed Feb. 16, 2011—IEEExplore] http://iceexplore.ieee.org/
xpislabs all.jsp?arnumber=5496725.

Bolchini et al. “Smart Card Embedded Information Systems: A
Methodology for Privacy Oriented Architectural Design,” Data &
Knowledge Engineering, 2002. vol. 41, p. 159-182. [Accessed Feb.
16, 2011—ScienceDirect.com].

Cavium Networks, “Nitrox® DPI L7 Content Processor Family,”
Accessed on Feb. 16, 2011 at http://www.caviumnetworks.com/
processor_ NITROX-DPILhtml.

Cavium Networks, “Nitrox® Lite,” Accessed on Feb. 16, 2011 at
http://www.caviumnetworks.com/processor__securitLnitroxLite.
htm.

Ferrante et al. “Application-Driven Optimization of VLIW Archi-
tectures: A Hardware-Software Approach,” Proceedings of the 11th
IEEE Real Time and Embedded Technology and Applications
Symposium, Mar. 7-10, 2005. p. 128-137. [Accessed Feb. 15,
2011—IEEExplore] http://ieeexploreieee.org/xpls/abs_ all.
jsp?arnumber=1388380.

“u—velOSity Microkemel,” (datasheet)

Freescale Semiconductor, “IP Multimedia Subsystems,” 2006. (bro-
chure) [Accessed Feb. 16, 2011] http://cachelreescale.com/files/
32biUdoc/brochure/BRIMSSOLUTIONS.pdf.

Green Hills Software, “p-velOSity Real-Time Microkernel,”
Accessed on Feb. 16, 2011 at http://www.ghs.com/products/micro__
velosity. html.

Green Hills Software, Inc., <
2pgs.) 2006.

Hattori. “Challenges for Low-Power Embedded SOC’s,” Interna-
tional Symposium on VLSI Design, Automation and Test, Apr.
25-27, 2007. 4pgs. [Accessed Feb. 16, 2011—IEEExplore] http://
ieeexplore.icee.org/xpis/abs_ all.jsp?arnumber=4239406.

Journal of Technology & Science, “Express Logic, Inc.; Express
Logic and IAR Systems Team Up to Provide ThreadX RTOS
Support in IAR Embedded Workbench IDE for Freescale ColdFire,”
Accessed on Feb. 16, 2011 at http://proquest.umi.com.mutex.gmu.
edu/pgqdweb?index=7 &did=1541305

Kakarountas et al. “Implementation of HSSec: A High-Speed Cryp-
tographic Co-Processor,” IEEE Conference on Emerging Technolo-
gies and Factory Automation, Sep. 25-28, 2007. p. 625-631.
[Accessed Feb. 16, 2011—IEEExplore] http://ieeexplore.icee.org/
xpls/abs__ all jsp?arnumber=4416827.

Ke et al. “Design of PC/104 Processor Module Based on ARM,”
International Conference on Electrical and Control Engineering,
Jun. 25-27, 2010. p. 775-777. [Accessed Feb. 17, 2011—
IEEExplore] http://ieeexplore.iece.org/xpis/abs_ all.
jsp?arnumber=5630566.

Kinebuchi et al. “A Hardware Abstraction Layer for Integrating
Real-Time and General-Purpose with Minimal Kernel Modifica-
tion,” Software Technologies for Future Dependable Distributed
Systems, Mar. 17, 2009, p. 112-116. [Accessed Feb. 16, 2011—
IEEExplore] http://ieeexplore.iece.org/xpls.abs—all.
jsp?arnumber=4804582.

Tabari, et al. “Neural Network Processor for a FPGA-based
Multiband Fluorometer Device,” International Workshop on Com-
puter Architecture for Machine Perception and Sensing, Sep. 2006.
p. 198-202. [Accessed Feb. 16, 2011—IEEExplore] http:/
ieeexplore.icee.org/xpls/abs_ all.jsp?arnumber=4350381.

Wang et al. “Towards High-Performance Network Intrusion Pre-
vention System on Multi-core Network Services Processor,” 15th
International Conference on Parallel and Distributed Systems, Dec.
8-11, 2009. p. 220-227. [Accessed Feb. 16, 2011—IEEExplore].
Wong, William, “16-Bit MCU Invades 8-Bit Territory with 4-By
4-mm Chip,” Electronic Design, Sep. 29, 2005. vol. 53, No. 21, p.
32. [Accessed Feb. 16, 2011—Academic Search Complete].
“Yoggie Pico Personal Security Appliance,” www.yoggie.com.
(archived on May 31, 2009) [Accessed Feb. 16, 2011—Archive.
org].

“Yoggle Security Unveils Miniature Hardware Appliance,” www.
yoggie.com. (archived on May 31, 2009) [Accessed Feb. 16,
2011—Archive.org].

“Yoggie Unveils Miniature Internet Security Devices for Mac
Computers,” M2 Telecomworldwire,Oct. 14, 2008. [Accessed Feb.
18, 2011—Academic Source Complete].

Quan Huang et al.: “Embedded firewall based on network proces-
sor”, 2005, IEEE, Proceedings of the Second International Confer-
ence on Embedded Software and Systems (ICESS’05), 7 pages.
International Search Report and Written Opinion mailed Dec. 30,
2010 in Patent Cooperation Treaty application No. PCT/US10/
55186, filed Nov. 2, 2010.

Benini et al.: “Finite-state machine partitioning for low power,”
1998, IEEE.

Extended European Search Report mailed Apr. 3, 2013 in European
Patent application No. 10828991.9, filed Nov. 2, 2010.

Antoniou, S. “Networking Basics: TCP, UDP, TCP/IP and OSI
Model,” Oct. 29, 2007, <www.translingal.com/blog/networking-
basics-tco=udp-tcpip-osi-models> (retrieved Jun. 4, 2013) 8 pages.
International Search Report and Written Opinion mailed Sep. 12,
2012 in Patent Cooperation Treaty application No. PCT/US12/
50107, filed Aug. 9, 2012.

International Search Report and Written Opinion mailed Oct. 16,
2012 in Patent Cooperation Treaty application No. PCT/US12/
50101, filed Aug. 9, 2012.

u-velOSity Microkernel,” (datasheet—

US 9,705,848 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Mukherjee. “A Runtime Framework for Parallel Programs”
[Online]. Dated Aug. 16, 2006. Retrieved on Sep. 24, 2012.
Retrieved from the internet at URL: <http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.122.6849&rep=rep 1 &type=pdf>,
entire document, especially p. III.

Rusling, “The Linux Kernel” Chapter 2, Jan. 2007, downloaded
from web.archive.org/web/20070105172636/http://www.tldp.org/
LDP/tlk/basics/sw.html.

Extended European Search Report mailed Jan. 23, 2015 in Euro-
pean Patent application No. 12827760.5, filed Aug. 9, 2012, 7
pages.

Mills: “Kernel timekeeping support”, Dec. 31, 2006, Computer
Network Time Synchronization the Network Time Protocol,
[online], [retrieved on Jan. 14, 2015], Retrieved from the internet:
<http://www.crcnetbase.com/doi/abs/10.1201/9781420006 155.
ch8>, pp. 125-144.

Extended European Search Report mailed Mar. 25, 2015 in Euro-
pean Patent application No. 12828083.1, filed Aug. 9, 2012, 6
pages.

European Patent Application No. 10828991.9, “Office Action,”
Nov. 25, 2016, 4 pages.

* cited by examiner

U.S. Patent Jul. 11, 2017 Sheet 1 of 8 US 9,705,848 B2

EDGE DEVICE

|
| |
| |
| |
| |
| |
| |
| 120 |
| FIREWALL SECURITY |
| |
| |
| |
| |
| |
| |
| |

DEVICE

APPLICATIONS
122

OPERATING SYSTEM
124

HARDWARE
126

NETWORK

CLIENT DEVICE CLIENT DEVICE CLIENT DEVICE

FIG. 1

U.S. Patent Jul. 11, 2017 Sheet 2 of 8 US 9,705,848 B2

200;

Memory
210

10 /10 N
Protocol | Network |

Request . Request |
: Handling) Interface |

Receiver Processing |
Module Module |

Module 230 Module | 250

220 esb 240 , = |
L

State Machine
260

FIG. 2

US 9,705,848 B2

U.S. Patent Jul. 11, 2017 Sheet 3 of 8
120
320 310 320
NIC PROCESSOR NIC

FIG. 3

US 9,705,848 B2

U.S. Patent Jul. 11, 2017 Sheet 4 of 8
120
320 310 320
NIC PROCESSOR NIC
410
UART

FIG. 4

U.S. Patent Jul. 11, 2017 Sheet 5 of 8 US 9,705,848 B2
120
310 510 520
PROCESSOR ROM RAM
320 320
NIC NIC
410
UART

FIG. 5

U.S. Patent Jul. 11, 2017 Sheet 6 of 8 US 9,705,848 B2

600;

610

RECEIVE A DATA PACKET ’
620

PROCESS THE DATA PACKET ‘

DATA PACKET IS
AUTHORIZED?

NO

640

\ TRANSMIT THE DATA BLOCK THE DATA 650
PACKET PACKET r

FIG. 6

US 9,705,848 B2

U.S. Patent Jul. 11, 2017 Sheet 7 of 8
710
WAN
700 730A
PORT
I
120
FIREWALL
SECURITY
DEVICE
|
750
SWITCH
730B 730C 730D 730E 740 T
PORT PORT PORT PORT WTRU
T~
”7/ CT~—
T LAN

FIG. 7

U.S. Patent

US 9,705,848 B2

Jul. 11, 2017 Sheet 8 of 8
800
750
SWITCH
120 120 120 120 120
FIREWALL FIREWALL || FIREWALL | | FIREWALL FIREWALL
730A 730B 730C 730D 740
PORT PORT PORT PORT WTRU
710 720
WAN LAN

FIG. 8

US 9,705,848 B2

1
ULTRA-SMALL, ULTRA-LOW POWER
SINGLE-CHIP FIREWALL SECURITY
DEVICE WITH TIGHTLY-COUPLED
SOFTWARE AND HARDWARE

CROSS REFERENCES TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/225,233, filed on Sep. 2, 2011, now U.S.
Pat. No. 8,875,276 entitled “Ultra-Low Power Single-Chip
Firewall Security Device, System and Method,” which is
incorporated by reference in its entirety. This application is
also related to U.S. patent application Ser. No. 13/277,111,
filed on Oct. 19, 2011, entitled, “TCP/IP Stack-Based Oper-
ating System,” which is a continuation of U.S. patent
application Ser. No. 12/938,290, filed on Nov. 2, 2010,
entitled, “TCP/IP Stack-Based Operating System,” both of
which are incorporated by reference in their entirety.

FIELD OF THE INVENTION

This application relates generally to computing systems
and, more particularly, to a firewall security device, system,
and method based on a protocol stack operating system.

BACKGROUND

Communication networks are widely deployed to provide
communication services, such as transmitting packet data,
multimedia, voice, video, broadcast, and the like. Tradition-
ally, networks such as the Internet are configured to provide
communication services between different computing sys-
tems and/or computers, servers, hosts, portable devices,
mobile phones, and other consumer electronic devices via
wired and/or wireless networking technologies. Network
communication may be facilitated by standard communica-
tion transport protocols such as the Transmission Control
Protocol/Internet Protocol (TCP/IP), the User Datagram
Protocol/Internet Protocol (UDP/IP), or similar transport
protocols.

One issue experienced by computing devices and systems
using these communication transport protocols relates to
issues of malicious attacks, unauthorized accesses, and the
like. To address this issue, computing systems typically
utilize a firewall controlling the data flow and preventing
access by unauthorized users.

A firewall is a software application, hardware, or a
combination thereof that controls network traffic between
networks or hosts and allows or blocks specific data packets
based on a comparison of network traffic characteristics to
the existing policies. Several types of firewall technologies
are available. Typically, firewalls operate on one or more
TCP/IP layers which include an application layer, a transport
layer, a network layer (also known as an IP layer), and a
physical layer (also known as a hardware layer or link layer).

Network-layer firewalls operate at a relatively low level
of the TCP/IP protocol stack, not allowing packets to pass
through the firewall unless the packets match the established
rule set. However, network-layer firewalls cannot make
more complex decisions based on which stage of commu-
nications has been reached between hosts.

Application-layer firewalls work on the application level
of the TCP/IP stack, and may intercept packets traveling to
or from an application. Generally, an application firewall can
prevent unwanted outside traffic from reaching a protected
device. However, one disadvantage of application-layer fire-

10

15

20

25

30

35

40

45

50

55

60

65

2

walls is their effect on performance of the devices protected.
Examining the contents of packets requires time and thus
slows down processing. Another disadvantage of applica-
tion-layer firewalls is administrative overhead. Because
application-layer firewalls add complexity, there is a poten-
tial for misconfiguration, which leads to access issues and
could also lead to blocking communications that were never
intended to be blocked.

Advanced firewalls that combine lower-layer access con-
trol with upper-layer functionality are also widely utilized.
One example of such an advanced firewall includes appli-
cation-proxy gateways. However, application-proxy gate-
ways also experience the above-mentioned complexity
problems, which cause a reduction in overall performance.

The causes of the performance problems relate to the
antiquated design of conventional computing devices prac-
ticing firewall features. Typically, these devices and other
conventional operating systems follow similar architectures,
including a layered design, device drivers, and Application
Programming Interfaces (APIs).

Moreover, conventional processor designs use a fixed-
frequency, continuously running crystal as the timing
mechanism for clocking through processor execution cycles.
Thus, the crystal and the microprocessor continue running
even if nothing is being accomplished in the system, use-
lessly cycling around and waiting for a process to actually
perform an action (e.g., process an incoming TCP/IP packet
at the Ethernet interface). The foregoing architecture is
inefficient in two respects. First, the crystal and micropro-
cessor transistors typically execute at their maximum speed
at all times, thereby consuming excess power and generating
excess heat. Secondly, it is inefficient to continue running
clock cycles if no substantive process is actually running.

Furthermore, conventional operating systems require
various modifications and enhancements each year, such as
incorporation of new communications layers for Ethernet
drivers, TCP/IP stacks, Web browsers, and the like. Gener-
ally, these new layers are added on top of the conventional
operating system, thereby increasing complexity, decreasing
performance, and leading to software crashes and security
flaws.

SUMMARY

This summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter.

In accordance with various embodiments disclosed
herein, a firewall security device is provided that includes an
operating system of an entirely new architecture. This oper-
ating system may be based fundamentally around the TCP/
IP stack (instead of including a TCP/IP layer as in a
conventional core operating system) and utilize a conven-
tional interface or similar extensions of the standard Berke-
ley Sockets (or WinSock) API.

In one embodiment, a firewall security device is provided.
The firewall security device comprises a processor and an
operating system (OS) embedded in the processor. The OS
may comprise a kernel. The OS kernel may include a state
machine comprising a protocol stack for communicating
with one or more devices via a network interface. Based on
predetermined firewall policies, the OS may be configured
to receive and transmit data packets and block unauthorized
data packets.

US 9,705,848 B2

3

In an example, the network interface may comprise at
least one Network Interface Controller (NIC) coupled to the
processor. The firewall security device may further comprise
a Universal Asynchronous Receiver/Transmitter (UART)
coupled to the processor. The firewall security device may
further comprise a memory coupled to the processor. The
memory may comprise one or more of a read only memory
(ROM) and a random access memory (RAM). The memory
may store instructions executable by the processor. The
instructions may comprise predetermined firewall policies
for transmitting or blocking data packets. The protocol stack
may comprise a TCP/IP stack.

According to another example, the protocol stack may
comprise a UDP/IP stack. The firewall security device may
further comprise an asynchronous clock to serve as an
internal clock for the operating system kernel. The asyn-
chronous clock may be configured to automatically stop
when clock cycles are not needed. A time reference for the
operating system kernel may communicate via a Network
Time Protocol (NTP), Simple Network Time Protocol
(SNTP), or other suitable time protocol from a remote time
server coupled to the network. The network may comprise
the Internet and the operating system utilizing sockets style
API of sockets and ports on IP addresses for implementing
firewall policies. The predetermined firewall policies may
comprise predetermined policies based on IP addresses
and/or protocols, applications, user identity, and network
activity.

According to another embodiment, a method for provid-
ing a firewall security device is provided. The method may
comprise receiving a data packet within an OS, with the OS
being a state machine comprising a protocol stack for
processing the data packets according to a network protocol,
and the operating system being embedded within a processor
and processing a received data packet to determine whether
the data packet is authorized based on firewall policies,
wherein unauthorized data packets are blocked while autho-
rized data packets are transmitted.

The protocol stack may comprise a TCP/IP. The protocol
stack may comprise a UDP/IP stack. Data packets may be
transmitted via a network interface comprising at least one
NIC. Executable instructions for the OS may be stored in a
memory of the processor and executed through a sockets
API. The predetermined firewall policies may comprise
policies based on IP addresses and/or protocols, applica-
tions, user identity, and network activity.

According to some embodiments, a computer-readable
storage medium may be provided. The computer-readable
storage medium may embed instructions. The instructions
executable by the processor may perform the method com-
prising receiving a data packet within an OS, with the OS
being a state machine that comprises a protocol stack for
processing the data packets according to a network protocol,
the operating system being embedded within a processor,
and processing the received data packet to determine
whether the data packet is authorized based on predeter-
mined firewall policies, wherein unauthorized data packets
are blocked while authorized data packets are transmitted.

A system for routing data packets across communication
networks is provided in some embodiments. The system
may include a plurality of communication ports, and a
switch, the switch being configured to transmit multiple data
packets between the plurality of communication ports. The
system may also include at least one firewall security device,
the firewall security device comprising a processor and an
operating system (OS) embedded in the processor. The OS
may comprise an operating system kernel, the operating

10

20

25

30

40

45

50

55

60

4

system kernel being a state machine having a protocol stack
for communicating with one or more devices via a network
interface. The OS may be configured to receive and transmit
data packets and block unauthorized data packets based on
predetermined firewall policies.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are illustrated by way of example and not
limitation in the figures of the accompanying drawings, in
which like references indicate similar elements.

FIG. 1 illustrates a diagram of a computing environment,
according to an exemplary embodiment.

FIG. 2 illustrates a block diagram of a TCP/IP stack-based
element, according to an exemplary embodiment.

FIGS. 3, 4, and 5 illustrate block diagrams of firewall
security devices, according to exemplary embodiments.

FIG. 6 illustrates a flow chart of a method for operating
a firewall security device, according to an exemplary
embodiment.

FIG. 7 illustrates a block diagram of a system employing
at least one firewall security device, according to an exem-
plary embodiment.

FIG. 8 illustrates a block diagram of a system employing
at least one firewall security device, according to an exem-
plary embodiment.

DETAILED DESCRIPTION

Various aspects of the subject matter disclosed herein are
now described with reference to the drawings, wherein like
reference numerals are used to refer to like elements
throughout. In the following description, for purposes of
explanation, numerous specific details are set forth in order
to provide a thorough understanding of one or more aspects.
It may be evident, however, that such aspect(s) may be
practiced without these specific details. In other instances,
well-known structures and devices are shown in block
diagram form in order to facilitate describing one or more
aspects.

Various embodiments disclosed herein provide firewall
security devices embedding an operating system based
entirely on a protocol stack. The protocol stack may be a
TCP/IP protocol stack, UDP/IP stack, combinations thereof,
or other protocols. The devices may include a processor,
which in turn includes an operating system embedded
therein. The operating system is fundamentally a state
machine. The kernel of the operating system is fundamen-
tally a protocol stack.

One of the advantages of such an operating system is that
it is inherently Internet-oriented. All Internet type function-
ality is natural and inherent in the protocol stack-based
processor design and implementation. In addition to many
advantages provided by various embodiments are a small
hardware design, very compact and efficient software, mini-
mal clock cycles for execution, a natural Internet connec-
tivity model, and low power consumption.

FIG. 1 illustrates a diagram of an example computing
environment 100. The environment 100 comprises an edge
device 110, a firewall security device 120, one or more client
devices 130A-C, and a communication network 140. Even
though three client devices 130A-C are shown in FIG. 1, any
number of client devices may be used to practice the
embodiments disclosed herein. The network 140 includes a
Local Area Network (LLAN), such as a proprietary network
or intranet, and a Wide Area Network (WAN), such as the
Internet. The network may be a wired network, a wireless

US 9,705,848 B2

5

network, or a combination thereof. Network 140 allows
communication between various components of the envi-
ronment 100. In other words, the edge device 110 may
communicate with one or more client devices 130A-C over
the network 140.

The edge device 110 and client devices 130A-C may
include a desktop computer, a laptop computer, a server, a
network host, a handheld computer, a mobile phone, a
smartphone, a personal digital assistant (PDA), and other
consumer electronic devices such as smart light bulbs, smart
water/electricity meters, wireless detectors, and so forth.

As shown in FIG. 1, the firewall security device 120
(“firewall” for short) may be coupled between the edge
device 110 to be protected and the network 140. According
to various embodiments, the firewall security device 120
may be implemented as a single chip, microchip, integrated
circuit, or the like. As shown in FIG. 1, the firewall security
device 120 may be implemented within three different layers
of the stack, applications 122, an Operating System (OS)
124, and hardware 126. The hardware layer may be more
important in stopping packets from reaching the other two
layers, thus representing the first line of defense in prevent-
ing of saturation of the system with the unnecessary traffic.

The firewall security device 120 is configured to control
network traffic between the network 140 and the edge device
110, and to prevent unauthorized users from accessing the
edge device (i.e. prevent malicious attacks, hostile attacks,
computer virus attacks, and the like). The firewall security
device 120 compares traffic characteristics to existing poli-
cies and, based on comparison, allows or blocks specific
data packets for further transmission. Traffic characteristics
may include IP addresses, protocols, thread characteristics,
user identity, and the like. Firewall policies may be based on
different technologies such as packet filtering, stateful
inspection, stateful protocol analysis, application-proxy
gateway managing, dedicated proxy server managing, net-
work control access, unified threat management, and virtual
private networking. Those who are skilled in the art would
understand that any firewall policies could be applied for
protection the edge device 110 from malicious attacks when
it interacts over the network 140. The firewall security
device 120 is described below in greater detail. According to
an example embodiment, the firewall security device 120
and the edge device 110 may be incorporated, integrated or
housed together.

FIG. 2 is a block diagram of an example TCP/IP stack-
based element 200. For example, the element 200 may be a
processor or a chip into which a TCP/IP stack-based oper-
ating system is embedded. The element 200 comprises a
memory 210, which may store one or more modules.
Example modules, which may be stored in the memory 210,
include an Input/Output (1/0) request receiver module 220,
a protocol handling module 230, an I/O request processing
module 240, and an optional network interface module 250.
It will be readily understood by those skilled in the art that
the technology described herein encompasses those embodi-
ments where one or more of the modules may be combined
with each other or not included at all in the memory 210.

The element 200 also comprises a state machine 260 for
executing various instructions and modules stored in the
memory 210. The state machine 260 may include one or
more state machines.

A module should be generally understood as one or more
routines that perform various system-level functions and
may be dynamically loaded and unloaded by hardware and
device drivers as needed. The modular software components

10

15

20

25

30

35

40

45

50

55

60

6

described herein may also be integrated as part of an
application specific component.

According to various embodiments disclosed herein, the
modules may each include executable instructions for the
operating system embedded into the element 200 and may
be executed through a sockets API.

The I/O request receiver module 220 is configured to
receive 1/O requests. The protocol handling module 230 is
configured to handle a specific protocol (e.g., TCP/IP, UDP/
IP, or the like) for the protocol stack state machine imple-
mentation. The I/O request processing module 240 is con-
figured to process the I/O requests from an application
according to the network protocol using the operating sys-
tem. The optional network interface module 250 may be
included and is configured to provide an interface between
the protocol stack state machine and a network interface
controller, which is described further in more details.

The element 200 may also comprise a clock, or, alterna-
tively, clocking may be provided externally. For example,
the state machine 260 may utilize a time reference using the
NTP or SNTP from a remote time server.

FIG. 3 is a block diagram of firewall security device 120
of FIG. 1, according to an exemplary embodiment. The
firewall security device 120 comprises a processor 310, and
two NICs 320 coupled to the processor 310.

The processor 310 may comprise a Computer Processing
Unit (CPU), a controller, a micro-controller, a microproces-
sor, an electronic device, other electronic units designed to
perform the functions described herein, or a combination
thereof. The processor 310 may be implemented as a multi-
core processor, or, alternatively, the firewall security device
120 may include several processors 310. The processor 310
is configured to execute processor executable instructions.

According to various embodiments disclosed herein, the
processor 310 embeds an operating system based on a
protocol stack. The protocol stack may be a TCP/IP protocol
stack, UDP/IP stack, combinations thereof, or other appro-
priate protocols. One particular example of the processor
310 embedding a TCP/IP stack-based operating system is
described with reference to FIG. 2.

Although it is not shown in FIG. 3, the processor 310 may
include a memory storing an operating system and/or any
further executable instructions and/or data (e.g., firewall
policies). The memory can be implemented within the
processor 310 or externally to the processor 310. As used
herein, the term “memory” refers to any type of long term,
short term, volatile, nonvolatile, or other storage devices and
is not to be limited to any particular type of memory or
number of memories, or type of media upon which memory
is stored. In some embodiments, the memory may comprise
one or more of a read only memory (ROM) and a random
access memory (RAM).

The firewall security device 120 further comprises two
NICs 320 coupled to the processor 310. The NICs 320 are
configured to couple the processor 310 and a network such
as a LAN and/or a WAN. Examples of NIC 320 include an
Ethernet controller and/or a wireless interface controller
(e.g., 802.11 controller, ZigBee controller, Bluetooth con-
troller, etc.). It will be apparent to those skilled in the art that
the NIC 320 can support many wired and wireless standards,
and provides communication over a Universal Serial Bus
(USB) connection, a firewire connection, an Ethernet con-
nection, a serial connection, a parallel connection, an Analog
Telephone Adapter (ATA) connection, a wireless USB con-
nection, an IEEE 802.11 connection, and so forth.

The NICs 320 may provide a network interface, for
example, to the Internet. In some embodiments, the NIC 320

US 9,705,848 B2

7

may be a software-based controller. In an example, the first
NIC 320 is used for connecting to a LAN or an edge device,
while the second NIC 320 is used for connecting to a WAN.
Although FIG. 3 shows two NICs 320, those skilled in the
art may understand that the firewall security device 120 may
comprise any number of NICs 320, or may not include them
at all.

FIG. 4 is a block diagram of firewall security device 120
of FIG. 1, according to an exemplary embodiment. The
firewall security device 120 comprises a processor 310, two
NICs 320 coupled to the processor 310, and a UART 410
coupled to the processor 310

The processor 310 may embed an operating system based
on a protocol stack. The protocol stack may be a TCP/IP
protocol stack, UDP/IP stack, combinations thereof, or other
appropriate protocols. Thus, the operating system is a TCP/
IP stack state machine, UDP/IP stack state machine, or alike.

The UART 410 relates to hardware configured to provide
communication between the processor 310 and a peripheral
device via a serial port. The UART 410 may be used to
out-of-band control and setup the processor 310. For
example, the firewall policies and corresponding routine
(software) may be uploaded, updated, changed, accessed,
and so forth, via the UART 410.

Alternatively, the UART 410 may be used to communi-
cate with an edge device to be protected (e.g., the edge
device 110 of FIG. 1), while one of the NICs 320 may be
used to out-of-band control and setup software of the
processor 310. One of ordinary skill in the art would readily
understand that any other arrangement is possible for con-
trolling and managing the routine stored in the firewall
security device 120.

FIG. 5 is a block diagram of firewall security device 120
of FIG. 1, according to still another example embodiment.
The firewall security device 120 comprises a processor 310,
two NICs 320, and an UART 410, which are all coupled
between each other via a bus. The firewall security device
120 further comprises a memory coupled to the bus. The
memory is any memory configured to store and retrieve data.
In the shown example, the memory includes a ROM 510 and
a RAM 520. However, it should be understood that the
security device 120 may comprise the ROM 510 only, for
example.

The term “memory” as used herein relates to a computer-
readable storage medium used to participate in providing
executable instructions to the processor 310 for further
execution. According to various embodiments, the memory
stores instructions (code) and data for the operating system
and instructions and data for implementing firewall security
features.

According to various embodiments, executable instruc-
tions and data for the operating system are stored separately.
Thus, the read-only executable instructions may be executed
directly from ROM, and only the read/write data needs to be
saved in some type of RAM. As a result, there are both
substantial power and cost savings. Moreover, the
assembled and linked code of the operating system may be
highly optimized for low power consumption, as well as
reduced ROM and RAM size.

FIG. 6 is a flow chart illustrating an exemplary method
600 for a firewall security device having a TCP/IP stack-
based operating system. According to the example, the
operating system utilizes sockets style API of sockets and
ports on IP addresses for handling /O requests.

In step 610, a data packet is received by the firewall
security device. According to the embodiments disclosed
herein, the data packet is an IP packet comprising source and

10

15

20

25

30

35

40

45

50

55

60

65

8

destination addresses, a header, flags, checksums, data pay-
load, and so forth. The data packet may be transmitted from
a WAN to a LAN or to an edged device, or vice versa.

In step 620, the received data packet may optionally be
processed by the firewall security device. Processing may
comprise any firewall techniques such as packet filtering,
stateful inspection, stateful protocol analysis, application-
proxy gateway managing, dedicated proxy server managing,
network control access, unified threat management, virtual
private networking, and so forth. Generally, at this step,
predetermined firewall policies are applied to the received
data packet to determine whether it is authorized or not.
Firewall policies may include policies based on IP addresses
and/or protocols, policies based on applications, policies
based user identity, policies based on network activity, and
so forth. Firewall policies may be applied for incoming
and/or outgoing traffic.

In step 630, it is determined whether the data packet is
authorized or not, e.g., based on predetermined firewall
policies. For example, it is checked whether source and/or
destination addresses are valid, whether these addresses
have a private destination or are encrypted or improperly
flagged. According to another example, it can be checked
what protocol is used in the data packet (e.g., packets having
IPv6 format shall be blocked if the edge device handles [Pv4
only). In yet another example, it can enforce user identity
policy by using digital certificates, cryptographic tokens,
authentication user IDs, and the like. According to still
another example, time-based policies can be applied to
reveal inactive periods. One of ordinary skill in the art would
understand that any other policies can be applied to deter-
mine authorization of data packets.

If it is determined in step 630 that the data packet is
authorized, the method 600 proceeds to step 640, where the
data packet is further transmitted by the firewall security
device (e.g., to an edge device). If, on the other hand, it is
determined that the data packet is not authorized, the method
600 proceeds to step 650 to block the data packet.

FIG. 7 is a block diagram of a system 700 employing a
firewall security device 120, according to an exemplary
embodiment. The system 700 may be used to implement a
router for forwarding data packets across communication
networks. In the example shown, the system 700 is used for
forwarding data packets between a WAN 710 (such as the
Internet) and a LAN 720, which may comprise one or more
computing devices (e.g., edge devices).

The system 700 comprises a number of ports 730A-E to
provide connection of the system 700 with said networks
and/or computing devices. In the FIG. 7, four ports 730A-E
are shown; however, there could be any number of them as
can be understood by one of ordinary skill in the art. The
system 700 may optionally comprise a Wireless Transmit-
ting/Receiving Unit (WTRU) 740, which may provide wire-
less connection with one or more computing/edge devices of
the LAN 720.

The system 700 further comprises a switch 750 config-
ured to route data packets between ports 730A-E and the
WTRU 740 (if any). The switch 750 may comprise a
processor, a microprocessor, a controller, a chip, or any other
circuitry for data routing.

In addition, the system 700 may include a firewall security
device 120, according to any embodiment disclosed herein
with reference to FIGS. 3-5. The firewall security device 120
may be coupled between the port 730A and the switch 750
in such a way that all data packets transmitted from the WAN
710 are first processed by the firewall security device 120 to
prevent malicious attacks and unauthorized access to the

US 9,705,848 B2

9

computing devices of LAN 720. If the data packets are
authorized by the firewall security device 120, they are
transmitted to the switch 750 for further routing.

FIG. 8 is a block diagram of a system 800 employing a
firewall security device 120, according to an exemplary
embodiment. The system 800 may be used to implement a
router for forwarding data packets across communication
networks. The system 800 comprises four ports 730A-D to
provide connection with a WAN 710 and a LAN 720, a
WTRU 740, a switch 750 and five firewall security devices
120. The firewall security devices 120 are respectively
coupled between each port 730A-D and a bus line, and
between the WIRU 740 and the bus line. The switch 750 is
also coupled to the bus line such that all said components are
interconnected, and multiple data packets can be forwarded
between ports.

The arrangement of the system 800 shown in FIG. 8
allows for applying firewall policies for data packets at each
port 730A-D and the WTRU 740 prior to reaching the switch
750, thereby preventing the edge device(s) from malicious
attacks.

Some of the above-described functions can be composed
of instructions that are stored on storage media (e.g., com-
puter-readable medium). The instructions may be retrieved
and executed by the processor 310. Common forms of
computer-readable media include, for example, a floppy
disk, a flexible disk, a hard disk, magnetic tape, any other
magnetic medium, a CD-ROM disk, digital video disk
(DVD), any other optical medium, any other physical
medium with patterns of marks or holes, a RAM, a PROM,
an EPROM, an EEPROM, a FLASHEPROM, any other
memory chip or cartridge, a carrier wave, or any other
medium from which a computer can read.

The following gives an overview of the advantages of
protocol stack-based processors, which can be used in
firewall security devices according to various embodiments,
disclosed herein.

Conventional operating systems manage internal tasks
and external programs in a dictatorial manner, by preemp-
tively multitasking through threads and processes. Such a
system is flexible and of general purpose in nature. How-
ever, it may not be optimal since applications and unknown
driver components have little or no control over their
scheduling.

In contrast to conventional operating systems, the oper-
ating system according to the various embodiments dis-
closed herein regards the whole environment as being inher-
ently cooperative and friendly. To that end, the whole system
is essentially a state machine. There is no executive, but a
cooperative state machine model. All systems and applica-
tion components are built together in an open and symbiotic
relationship. Only components actually required in a target
system are built into the environment.

In a conventional operating system, the kernel and other
systems components would comprise all the normal func-
tions of file and memory management, timers, input and
output, TCP/IP, and the like. There are numerous threads and
processes going on, such as kernel executive cycles around
all the running processes, updating clocks, checking com-
munication ports, updating displays, checking on Ethernet
traffic, and so forth. In this way, the conventional operating
system provides a highly sophisticated and flexible system,
but with the downside of a tremendous number of activities
(and hence clock cycles and, therefore, energy) going on all
the time.

In contrast, an implementation according to various
embodiments disclosed herein may include only the required

10

15

20

25

30

35

40

45

50

55

60

65

10

components. As a result, execution times and minimal code
size would be optimized, resulting in fewer energy cycles.
Such a simple firewall device has just the state machine
handling the lower operations of forwarding Ethernet data
packets up through the TCP/IP stack. When no tasks need to
be done, the state machine is idle. Therefore, the protocol
stack-based processor according to various embodiments
disclosed herein may eliminate wasted internal clock cycles
through the use of intelligent tasking, in contrast to multi-
tasking.

Various application areas for the system include clean
tech (green energy), medical, military, aerospace, automo-
tive, Smartphone, PDA, Pocket Computer, and so forth. In
the clean tech area, for example, one application for the
firewall security device may be “a tiny firewall security chip
for a smart light bulb,” where the network traffic may be
transmitted over the powerline. Another application example
may relate to smart meters (water meters, electricity meters).
Said devices may possess an integrated processor and a
transmitter for delivering measured data or other relevant
information. Application of a firewall security device in
these devices may help to prevent any malicious attacks.

Similarly, firewall security devices may be integrated in
medical electronic devices, such as a stent. A stent is a
synthetic tube inserted into a natural passage/conduit in the
body to prevent, or counteract, a disease-induced, localized
flow constriction. A tiny chip implementing data transmis-
sion and a tiny firewall security device could be built into
each stent along with a tiny ultra long life and low power RF
transmitter/receiver. The modified stent could send data
about the state of the artery in real-time over the wireless
network, such that the patient’s condition can be properly
monitored.

The present system could also be used for other medical
patient monitoring applications where the small size, low
power and Internet monitoring aspects would provide enor-
mous benefits (e.g., used in a “digital plaster” stuck to a
patient’s body to track vital signs, such as heart rate and
breathing, and then send alerts to doctors over the Internet).

The ultra low power aspect of the firewall security device
according to the various embodiments disclosed herein may
provide greatly improved battery life for various devices.
Boot up time for devices may be greatly reduced by execut-
ing instructions from the ROM, saving general state infor-
mation in battery-backed SRAM, and saving crucial micro-
processor register setting and other state information saved
in special registers in custom application-specific integrated
circuits (ASICs), for example.

A full 1P stack typically includes an application layer,
transport layer, internet layer, and link layer. The basic
operating system for the firewall security device may not
normally have all the components of a full Internet Protocol
stack. A basic kernel may have, for example, just HTTP on
top of TCP on top of IP on top of Ethernet. Alternatively, the
kernel may be built with SNMP on UDP on IP on Ethernet.

The above description is illustrative and not restrictive.
Many variations of the embodiments will become apparent
to those of skill in the art upon review of this disclosure. The
scope of the subject matter should, therefore, be determined
not with reference to the above description, but instead
should be determined with reference to the appended claims
along with their full scope of equivalents.

While the present embodiments have been described in
connection with a series of embodiments, these descriptions
are not intended to limit the scope of the subject matter to the
particular forms set forth herein. It will be further under-
stood that the methods are not necessarily limited to the

US 9,705,848 B2

11

discrete steps or the order of the steps described. To the
contrary, the present descriptions are intended to cover such
alternatives, modifications, and equivalents as may be
included within the spirit and scope of the subject matter as
disclosed herein and defined by the appended claims and
otherwise appreciated by one of ordinary skill in the art.

What is claimed is:

1. A firewall security device, comprising:

a processor; and

an operating system (OS) embedded in the processor,

the OS comprising

a protocol stack for communicating with one or more
devices via a network interface,
wherein the protocol stack is configured to receive
and transmit data packets, and block unauthorized
data packets within one or more layers of the
protocol stack based on predetermined firewall
policies;
wherein the OS utilizes sockets style Application Pro-
gramming Interface (API) of sockets and ports on [P
addresses for implementing the predetermined fire-
wall policies, wherein all operations for the OS are
executed using the sockets style API.

2. The device of claim 1, wherein the network interface
comprises at least one Network Interface Controller (NIC)
coupled to the processor.

3. The device of claim 1, further comprising a Universal
Asynchronous Receiver/Transmitter (UART) coupled to the
processor.

4. The device of claim 1, further comprising a memory
coupled to the processor, the memory comprising read only
memory (ROM) and random access memory (RAM).

5. The device of claim 4, wherein the ROM stores
instructions executable by the processor, the instructions
comprising predetermined firewall policies for transmitting
or blocking data packets.

6. The device of claim 1, wherein the protocol stack
comprises a Transmission Control Protocol/Internet Proto-
col (TCP/IP) stack.

7. The device of claim 1, wherein the protocol stack
comprises a User Datagram Protocol/Internet Protocol
(UDP/IP) stack.

8. The device of claim 1, further comprising an asynchro-
nous clock to serve as an internal clock for the operating
system, the asynchronous clock being configured to auto-
matically stop when clock cycles are not needed.

9. The device of claim 1, wherein a time reference for the
operating system is received via a Network Time Protocol
(NTP) or Simple Network Time Protocol (SNTP) from a
remote time server coupled to the network.

10. The device of claim 1, wherein the predetermined
firewall policies comprise one or more of policies based on
an Internet Protocol (IP) address, a protocol, an application,
a user identity, and a network activity.

11. A method comprising:

receiving a data packet, within an operating system (OS),

the OS
being a state machine that comprises a protocol stack
for processing the data packet according to a
network protocol,
the OS being embedded and executing within a pro-
cessor; and
processing the received data packet within one or more
layers of the protocol stack to determine whether the
data packet is authorized based on predetermined fire-

10

15

20

25

30

35

40

45

50

55

60

65

12

wall policies, wherein unauthorized data packets are
blocked while authorized data packets are transmitted;
and
wherein the OS utilizes sockets style Application Pro-
gramming Interface (API) of sockets and ports on IP
addresses for implementing the predetermined firewall
policies, wherein all operations for the OS are executed
using the sockets style APIL.
12. The method of claim 11, wherein the protocol stack
comprises a Transmission Control Protocol/Internet Proto-
col (TCP/IP) or a User Datagram Protocol/Internet Protocol
(UDP/IP) stack.
13. The method of claim 11, wherein data packets are
transmitted via a network interface, the network interface
comprising at least one Network Interface Controller (NIC).
14. The method of claim 11, wherein executable instruc-
tions for the operating system are stored in a read only
memory (ROM) of the processor and executed through a
sockets applications programming interface (API).
15. The method of claim 11, wherein the predetermined
firewall policies comprise one or more of the policies based
on an IP address, a protocol, an application, a user identity,
and a network activity.
16. A non-transitory computer-readable storage medium
having embodied instructions thereon, the instructions
executable by a processor to:
receive a data packet, within an operating system (OS),
the OS is based entirely on a protocol stack and
comprising a dedicated OS kernel,

the dedicated OS kernel consisting of a state machine
that comprises the protocol stack for processing the
data packet according to a network protocol, the OS
being embedded and executing within a processor;
and

process the received data packet within one or more layers
of the protocol stack to determine whether the data
packet is authorized based on predetermined firewall
policies, wherein unauthorized data packets are
blocked while authorized data packets are transmitted;
and

wherein the OS utilizes sockets style Application Pro-
gramming Interface (API) of sockets and ports on IP
addresses for implementing the predetermined firewall
policies, wherein all operations for the OS are executed
using the sockets style APIL.

17. A system for routing data packets across communi-

cation networks, comprising:

a plurality of communication ports;

a switch, the switch being configured to transmit multiple
data packets between the plurality of communication
ports; and

at least one firewall security device, the firewall security
device comprising an operating system (OS) embedded
in a processor, the OS having a protocol stack that
communicates with one or more devices via a network
interface, wherein the protocol stack is configured to
receive and transmit data packets and block unauthor-
ized data packets within one or more layers of the
protocol stack based on predetermined firewall poli-
cies; and

wherein the OS utilizes sockets style Application Pro-
gramming Interface (API) of sockets and ports on IP
addresses for implementing the predetermined firewall
policies, wherein all operations for the OS are executed
using the sockets style APIL.

US 9,705,848 B2
13

18. The system of claim 17, wherein the at least one
firewall security device is coupled to at least one commu-
nication port and a switch.

19. The system of claim 18, wherein the at least one
firewall security device comprises a plurality of firewall 5
security devices, each of the plurality of communication
ports being provided with a respective one of the plurality of
firewall security devices.

20. The system of claim 18, wherein the protocol stack
comprises a Transmission Control Protocol/Internet Proto- 10
col (TCP/IP) stack or a User Datagram Protocol/Internet
Protocol (UDP/IP) stack.

#* #* #* #* #*

14

