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1
TCP/IP STACK-BASED OPERATING
SYSTEM

CROSS REFERENCES TO RELATED
APPLICATIONS

This nonprovisional patent application claims priority to
U.K. Application No. 0919253.5, filed Nov. 3, 20009, titled:
“A New Architecture for Software and Hardware Design in
Miniscule Microprocessor Systems” and to U.K. Applica-
tion No. 1010886.8, filed Jun. 29, 2010, titled: “A New
Architecture for Software and Hardware Design in Minis-
cule Microprocessor Systems, for Internet Connected
Devices”, which are hereby incorporated by reference in
their entirety.

FIELD OF THE INVENTION

The present invention is generally related to computing
systems, and more particularly, to a protocol stack-based
computing system.

BACKGROUND

Conventional computing devices (such as a desktop,
laptop) or a “smart” mobile phone (such as an Apple
iPhone® or Nokia E71®), run an operating system. Con-
ventional operating systems include Microsoft Windows®,
Apple OS X®, Symbian®, or Linux®, and are quite similar
in architecture, in that each tends to have conventional file
and memory management operations, storage and graphical
user interface operations, and so forth.

Such conventional operating systems are old-fashioned in
their fundamental design, in as much as their core kernels
date from architectures and implementations generally sev-
eral decades old. For instance, the Apple OS X and Linux
operating systems are each based on the Unix operating
system which was developed in the 1970s. Similarly, Micro-
soft’s Windows operating system has its roots strongly in
MS-DOS operating system, itself from the 1970s. Typically,
these and other conventional operating systems follow very
similar architectures, including a layered design, device
drivers, and Application Programming Interfaces (APIs).
The executable instructions for these conventional operating
systems are all typically coded in high-level languages, such
as ‘C” and C++.

In a “conventional” operating system, a core kernel
“executive” has essentially master control over all the opera-
tion of the overlying software (other systems components,
device drivers, applications, etc.). Typically, the executive
allocates timeslices of processor execution time on a pre-
emptive priority basis in threads and processes. That is, the
executive deterministically gives, in turn, registered appli-
cations or processes a piece of the action. Ironically, most of
the time nothing is being done at all. For the Microsoft
Windows operating system, for example, if nothing much is
going on, the System Monitor may show that the System
Idle Process is using 98% of the available microprocessor
time or clock cycles.

Conventional microprocessor designs use a fixed-fre-
quency, continuously running crystal as the timing mecha-
nism for clocking through microprocessor execution cycles.
Thus, the crystal and the microprocessor continue running
even if nothing much is being accomplished in the system,
uselessly cycling around and waiting for a process to actu-
ally perform a action (e.g., process an incoming TCP/IP
packet on the Ethernet interface or perform a calculation in
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a spreadsheet). This timing paradigm is energy-wasteful in
two respects. First, the crystal and microprocessor transis-
tors are typically executing at their maximum speed at all
times, thereby consuming excess power and generating
excess heat. Secondly, it is very inefficient to continue
running clock cycles if no substantive process is actually
running. However, the conventional operating system design
forces this inefficiency when using, for instance, a conven-
tional “multitasking,” pre-emptive prioritized operating sys-
tem, such as Windows®, OS X® or Linux®.

Furthermore, the conventional operating system kernel
executive must assume a hostile environment where it must
handle badly written or even malicious applications which
may hang, crash, or try to take control of the system.
Consequently, the operating system must be constantly
vigilant.

Moreover, such conventional operating systems require
various modifications and enhancements year by year, to
cater to new requirements and technologies. Such enhance-
ments are typically accomplished by “bolting on” a new
layer of functionality.

For instance, the rapid rise of the Internet in recent years
has made it necessary to bolt on many new components,
such as the communications layers of FEthernet drivers,
TCP/IP stacks, and Web browsers. Generally, these are
inelegant additions to the conventional operating system,
often leading to poor performance, software crashes, and
security flaws.

SUMMARY OF THE INVENTION

In accordance with various embodiments of the present
invention, a computing system is provided that includes an
operating system of an entirely new architecture. The oper-
ating system may be based fundamentally around the TCP/
IP stack. Rather than “bolting on” a TCP/IP stack onto a
conventional core operating system, the TCP/IP stack is the
operating system in various embodiments. All functions run
through the conventional interface, or similar extensions of,
the standard Berkeley Sockets (or WinSock) Application
Programming Interface (API).

In addition to the conventional Sockets APIs, such as
socket( ), connect( ), listen( ) and so forth, all other functions
of the operating system and associated applications may
occur around the fundamental core of the TCP/IP stack.

According to various embodiments, the entire operating
system of the enhanced TCP/IP stack is a state machine.
Instead of including conventional operating system multi-
tasking structures, such as threads, processes, and sema-
phores, etc., the operating system is an amalgam of co-
operating state machine oriented components.

One of the advantages of such a computing system is that
it is inherently and fundamentally Internet-oriented. All
Internet type functionality is natural and inherent in the
computing system design and implementation, i.e., not just
bolted on as an afterthought.

The operating system may be written in low-level Assem-
bler, rather than a high-level language such as ‘C’ or C++.
The use of Assembly language has the advantage of much
reduced code size, faster execution time, less microproces-
sor clock cycles, and therefore less power cycles of the
microprocessor. The microprocessor, in which the operating
system may be embedded, may therefore have much lower
power consumption than in conventional designs.

According to various embodiments, executable instruc-
tions (code) and data for the operating system are stored
separately. Thus, the read-only executable instructions may
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be executed directly from read only memory (ROM), and
only the read/write data needs to be saved in some type of
random access memory (RAM). As a result, there are both
substantial power and cost savings.

The code of the operating system may thus be imple-
mented in the actual microcode of the microprocessor or
microcontroller system. In some embodiments, the code is
implemented as a hardwired microcontroller system. As
used herein, the term “central processing unit” or “CPU”
encompasses any one of a microprocessor, microprocessor
system, microcontroller, and microcontroller system.

The assembled and linked code of the operating system
may be highly optimized for low power consumption, as
well as reduced ROM and RAM size. Conventional com-
puting systems utilize a conventional general-purpose
microcontroller or microprocessor architecture and a general
purpose operating system design. Such designs tend to
optimize more commonly used opcode instructions into
fewer bytes. Less-commonly used opcodes take more bytes
and therefore more energy and clock cycles. According to
various embodiments, an assembler/linker code generator
analyzes the actual implementation-specific usage of opcode
instructions and dynamically creates an optimized opcode
instruction set to minimize energy clock cycle usage.

In some embodiments, the microprocessor design mask
may be optimized for binary 1’s and 0’s, depending on
whether a majority of 1’s or 0’s may produce a lower overall
power consumption.

In addition, the overall design of TCP/IP stack-based
operating system is inherently secure in the Internet envi-
ronment, as it is fundamentally architected around Internet
principles, and therefore not prone to security flaws inherent
in bolted on afterthought implementations.

Embodiments may provide a method including receiving,
by an operating system, input/output (I/O) requests from an
application residing in an application layer of a system, the
operating system being a state machine that comprises a
protocol stack for processing the I/O requests according to
a network protocol, the operating system being embedded
within and executing within a central processing unit (CPU),
and processing the I/O requests from the application accord-
ing to the network protocol using the operating system.

Further embodiments include computing systems includ-
ing a network interface coupled with a network and a central
processing unit (CPU), and the central processing unit
including an operating system (OS) embedded therein, the
operating system being a state machine and including a
kernel, the kernel comprising a protocol stack for commu-
nicating with one or more devices of the network via the
network interface.

Embodiments may also include a chip having a central
processing unit (CPU), and an operating system embedded
in the CPU, the operating system comprising a kernel, the
operating system kernel being a state machine and compris-
ing a TCP/IP protocol stack for communicating with one or
more devices via a network interface.

Embodiments may yet further include computer-readable
storage media, having embodied thereon programs for
executing one or more exemplary methods according to the
present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of an exemplary computing environ-
ment in which an exemplary system having a TCP/IP
stack-based operating system may be practiced.
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FIG. 2 is a block diagram of an exemplary TCP/IP
stack-based element.

FIG. 3 is a flow chart illustrating an exemplary method for
a system having a TCP/IP stack-based operating system.

FIG. 4A is a diagram illustrating an exemplary system that
includes a TCP/IP stack state machine-based system, with a
web server and SNMP daemon.

FIG. 4B is a timing diagram illustrating timing for an
asynchronous clock for various aspects of FIG. 4A.

FIG. 5 illustrates an exemplary TCP/IP stack state
machine-based system implemented as an HTTP web server
and the operation thereof.

FIG. 6 depicts an exemplary architecture for a TCP/IP
stack state machine-based system according to various
embodiments.

FIG. 7 illustrates an exemplary computing device accord-
ing to various embodiments.

FIG. 8 depicts an exemplary computing device or time
server that may communicate with a system in an exemplary
computing environment, in some embodiments.

All the figures provided herein are exemplary only. Also,
like numbered elements in figures refer to like elements.

DETAILED DESCRIPTION

Embodiments provide systems and corresponding meth-
ods providing an operating system based wholly around a
protocol stack, such as a Transmission Control Protocol/
Internet Protocol (TCP/IP) stack. The system may include a
central processing unit (CPU) including an operating system
embedded therein, and a network interface coupled with a
network and the CPU. The network may be the Internet. The
operating system is fundamentally a state machine. The
kernel of the operating system is fundamentally just a
protocol stack for communicating with one or more devices
of the network via the network interface. The protocol stack
may be, but is not limited to, a TCP/IP protocol stack,
UDP/IP stack, combinations thereof, or other protocols. A
chip may be provided that includes the TCP/IP stack state
machine based operating system embedded in a CPU.

Among the many advantages provided by various
embodiments of the present invention are a small hardware
design, very compact and efficient software, minimal clock
cycles for execution, a natural Internet connectivity model,
and extremely low power consumption.

FIG. 1 is a diagram of an exemplary computing environ-
ment 100 in which an exemplary system having a TCP/IP
stack-based operating system may be practiced. The envi-
ronment 100 comprises a computing network 110, a device
120, an optional time server 130, and clients 140A-C.
Though three clients 140A-C are shown in FIG. 1, any
number of clients may be used to practice the invention. The
device 120, the time server 130, and clients 140A-C may
each comprise one or more computing devices. A computing
device may include a desktop computer, a laptop computer,
a server, a handheld computer, a smartphone, a personal
digital assistant, etc.

Network 110 may be a local, proprietary network (e.g.,
intranet) and/or may be a part of a larger wide-area network.
For example, the network 110 may be a local area network
(LAN), which may also be communicatively coupled to a
wide area network (WAN), such as the Internet. Network
110 allows for communication between the various compo-
nents of environment 100.

The device 120 may communicate with one or more client
devices 140A-C over network 110. Clients 140A-C may be
devices (described in further detail with respect to FIG. 2
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and FIG. 7) that include the TCP/IP stack state machine
operating system. Clients 140A-C may each be a chip, each
having the TCP/IP stack state machine operating system
embedded in a CPU and communicating with network 110
either wired or wirelessly via a network interface. The
device 120 may be a computing device (described in further
detail with respect to FIG. 8) having a browser for commu-
nicating with the clients 140A-C over the network to get
status or send commands. For example, the clients 140A-C
may each be a light bulb, for example, each having a chip
having the TCP/IP stack state machine operating system
embedded in a CPU. The ultra low power and miniscule size
of the chips resulting from the present design provide that
and countless other application possibilities.

The device 120 may be a HTTP web server or Simple
Network Management Protocol (SNMP) daemon described
in further detail with respect to FIG. 4A. Alternatively, the
device 120 may be a device described in further detail with
respect to FIG. 2 that includes the TCP/IP stack state
machine operating system.

The operating system kernel does not require an accurate
internal clock source since it may get a time reference using
the Simple Network Time Protocol (SNTP) from a remote
time server, e.g., time server 130.

Device 120 and time server 130 may comprise any
combination of computer hardware and software configured
to receive and transmit information over the network 110,
thereby communicating with the clients 140 A-C.

FIG. 2 is a block diagram of an exemplary TCP/IP
stack-based element 200. The element 200 may be a chip
into which a TCP/IP stack based operating system is embed-
ded, for example. The element 200 may include a memory
210, which may store one or more modules. Exemplary
modules which may be stored in the memory 210 include an
1/0O request receiver module 220, a protocol handling mod-
ule 230, an I/O request processing module 240, and an
optional network interface module 250. It will be appreci-
ated by one skilled in the art that the technology described
herein encompasses those embodiments where one or more
of the modules may be combined with each other or not
included in the memory 210 at all.

The element 200 may further include a state machine 260
for executing various instructions and modules stored in
memory 210. The state machine 260 may include one or
more state machines as shown and described in further detail
with respect to FIGS. 4A and 7.

A module should be generally understood as one or more
routines that perform various system-level functions and
may be dynamically loaded and unloaded by hardware and
device drivers as required. The modular software compo-
nents described herein may also be integrated as part of an
application specific component.

According to various embodiments, the modules may
each include executable instructions for the operating sys-
tem embedded into element 200 and may be executed
through a sockets applications programming interface (API).

The /O request receiver module 220 is configured to
receive input/output (I/O) requests. The requests may be
from an application residing in an application layer of a
system as described in further detail with respect to FIG. 6.

The protocol handling module 230 is configured to handle
a specific protocol for the protocol stack state machine
implementation. The protocol may be a Transmission Con-
trol Protocol/Internet Protocol (TCP/IP) stack such that the
operating system is a TCP/IP stack state machine. In some
embodiments, the protocol stack includes a different proto-
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col stack, e.g., a User Datagram Protocol/Internet Protocol
(UDP/IP) stack, which may be used in addition to or in place
of the TCP/IP stack.

As will be described in greater detail later herein, the
network 110 in FIG. 1 comprises the Internet and the
operating system utilizes sockets style API of sockets and
ports on IP addresses for handling I/O requests. The I/O
request processing module 240 is configured to process the
1/O requests from an application according to the network
protocol using the operating system.

The optional network interface module 250 may be
included and is configured to provide an interface between
the protocol stack state machine and a network interface.
The corresponding network interface may be a hardware or
a “soft” Ethernet controller as described in further detail
with respect to FIG. 4A. Alternatively, the corresponding
network interface hardware may be a wireless interface,
including, but not limited to, an 802.11 based interface,
ZigBee, or Bluetooth, etc.

FIG. 3 is a flow chart illustrating an exemplary method
300 for a system having a TCP/IP stack-based operating
system. The operating system utilizes sockets style API of
sockets and ports on IP addresses for handling I/O requests.

In step 310, an I/O request is received. The request may
be from an application residing in an application layer of a
system.

In step 320, the network protocol is determined. Accord-
ing to various embodiments, the protocol is TCP/IP, such
that the operating system is a TCP/IP stack state machine. In
some embodiments, the protocol is UDP/IP. UDP is an
unreliable connectionless protocol sitting on top of 1P, and
TCP is a connection-oriented reliable protocol. The protocol
may be a hybrid of TCP and UDP wherein a data connection
stream includes a mixture of UDP and TCP packets. UDP
has less overhead and is suitable for lower-importance
information than TCP, which has a higher overhead but
essentially guarantees reception. For instance, a stream of
data comprising non-essential information (such as low-
importance data) mixed with critical data could better be
transmitted over such a hybrid link. This hybrid protocol
may be determined in step 320.

In step 330, the 1/O request is processed according to the
network protocol. The processing may be performed by the
state machine that fundamentally is the operating system,
e.g., a TCP/IP stack state machine operating system. The
operating system utilizes sockets style API of sockets and
ports on IP addresses for handling /O requests. The con-
ventional Berkeley Sockets style API of sockets and ports on
IP addresses may be used. The Berkeley sockets specify the
data structures and function calls that interact with the
network subsystem of the operating system.

FIG. 4A is a diagram illustrating an exemplary system 400
that includes a TCP/IP stack state machine 410, with an
HTTP web server 460 and an SNMP daemon 470. The
TCP/IP stack state machine 410 is fundamentally the oper-
ating system kernel and may embedded in a core CPU. The
system 400 includes the TCP/IP stack state machine 410 and
an Ethernet 802.11 hardware 420. The Ethernet controller
420 may provide a network interface, for example, to the
Internet. In some embodiments, the Ethernet controller may
be a software-based controller. The exemplary system 400
also includes the HTTP web server 460, the SNMP daemon
470, a listen port 80 identified as 440, and a listen port 161
identified as 450. The HTTP web server 460 and SNMP
daemon 470 may be devices as described in further detail
with respect to FIG. 8. Additional state machines (e.g., state
machine 430 and state machine 440) may be included for
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each corresponding listen port. A state machine manager
component may be included to tie the various state machines
together.

Conventional microprocessors run on fixed frequency
clocks driven by a crystal which runs all the time. In
contrast, according to various embodiments, an asynchro-
nous (variable) clock may serve as an internal clock for the
operating system for the system 400. FIG. 4B is a timing
diagram illustrating timing for an asynchronous clock for
various aspects of FIG. 4A.

The asynchronous clock is configurable to automatically
stop when clock cycles are not needed. As illustrated in FIG.
4A, cooperative components cycle in turn around their state
machine cycles until they are all in a state of rest, at which
point the internal clock can stop. As shown at 480 in FIG.
4B, the asynchronous system clock may be restarted by a
wake-up “daemon” signal from the SNMP daemon, e.g. an
incoming data packet. The system 400 illustrates that there
is no point going round an endless idle loop if there is no
action is needed.

The executable instructions may be optimized to be much
tighter and more efficient than conventional systems, so
much lower clock rates may be used. A self-adjusting cycle
rate may be provided depending on load and function to be
performed. In addition, self-learning or pre-predicted algo-
rithms for expected scenarios may be utilized to put the CPU
into a ‘doze’ mode of fractional Hz. Any expected external
event may cause the CPU to exit the doze mode, resume full
speed operation to execute necessary operations to handle
the external event, and return back to doze. In a doze or a
deep sleep mode, the CPU register contents may be read and
stored in special registers with very long deep-sleep data
maintaining capabilities. Such clock saving measures yield
substantial power savings.

In some embodiments, no conventional crystal is used.
The operating system kernel does not require an accurate
internal clock source since it may get a time reference using
the Simple Network Time Protocol (SNTP) from a remote
time server coupled to the network, see e.g., time server 130
in FIG. 1

FIG. 5 illustrates an exemplary TCP/IP stack state
machine-based system 500 implemented as an HTTP web
server and operation thereof. The system includes the TCP
502 on top of IP 504 on top of Ethernet (e.g., NE2000)
hardware 506. The system also may include a twisted pair
bus 520 coupled to the Ethernet hardware 506. A clock
manager 508 may also be included.

In operation, the system 500 may function as a simple
web server comprising a TCP/IP state machine for handling
the lower operation of receiving Ethernet packets up through
the TCP/IP stack, and responding to HTTP requests. The
system as web server would open a port on a socket on an
1P address (e.g., port 80 identified at 522), and listen on that
port. Port data is read at 524, the HTTP requests are parsed
at 526, and responses are sent from a respond block 528.

When no tasks need to be done, the state machine is idle.
The clock manager 508 causes a turn off state 510 based on
a determination at 512 that there is no data to process. An
asynchronous system clock may be restarted by a wake-up
“daemon” signal 514 received after a wait for interrupt state
516. The receive interrupt block 518 sends the interrupt to
the wait for interrupt state 516 in response to receiving data.

FIG. 6 depicts an exemplary architecture 600 for a TCP/IP
stack state machine-based system according to various
embodiments. The operating system kernel architecturally
includes the portion of the system between applications 640
and hardware 680 and operates between applications 640
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and hardware 680. The kernel fundamentally includes a
TCP/IP stack which the whole operating environment is
built around. The kernel may include TCP extensions 620
which, together with the TCP stack 610, is above an IP
(Internet Protocol) layer 650. The kernel may include one or
more device drivers 670, 672, and 674, as well as an
Ethernet controller 660.

The fundamental application programming interface
(API) for all operations of the operating system may be the
conventional Berkeley Sockets style API of sockets and
ports on IP addresses. The Berkeley sockets specify the data
structures and function calls that interact with the network
subsystem of the operating system. The kernel handles all
the normal Sockets APIs. The sockets API 630 may also
include some optimized APIs.

Any non-conventional functions, outside the normal
Internet ones, are handled in exactly the same manner, e.g.,
by opening sockets and binding to ports. Thus, the accessing
of'local input and output (e.g., keyboards, mice, and display
screens) may all be accomplished through socket/port opera-
tions. Consequently, it is quite transparent as to whether a
device is local or remote—a keyboard could be on a local-
host at 127.0.0.1, for example, or remote on another IP
address. Though this transparency may be an aspect of other
operating systems, it is generally not fundamentally inherent
in the operating system design from the outset. Accordingly,
the “naked” kernel can be tiny in a minimal configuration,
perhaps as small as just a few hundred bytes in size.

FIG. 7 illustrates a computing device 700 according to
various embodiments. The computing device 700 comprises
a state machine 702, a read only memory (ROM) 704, a
random access memory (RAM) 718, a network interface
710, and optionally, additional state machines such as 714
and 716, which are all coupled to a system bus 706. Like
state machine 260 (FIG. 2), state machine 702 is configured
to execute executable instructions in a state machine man-
ner. When no tasks need to be done, the state machine 702
is idle.

The network interface 710 may be any device that may
receive data from a network or provide data to the system
bus 706. The network interface 710 may be coupled to any
digital device via the link 712. The network interface 710
may include, but is not limited to, a hardware or software
Ethernet interface/controller, a wireless interface (e.g.,
802.11, ZigBee, or Bluetooth). It will be apparent to those
skilled in the art that the network interface 710 can support
many wired and wireless standards.

Examples of the state machines 714 and 716 is provided
in FIG. 4A where state machines 430 and 440 operate along
with the TCP/IP stack state machine 410. The state machines
714 and 716, like state machines 430 and 440, may be
targeted to handle specific low level tasks, e.g., for listening
to ports, etc. A state machine manager component may be
included to tie the various state machines together.

Some of the above-described functions can be composed
of instructions that are stored on storage media (e.g., com-
puter-readable medium). The instructions may be retrieved
and executed for the state machine 702. Some examples of
storage media are memory devices, tapes, disks, integrated
circuits, and servers. The instructions are operational when
executed by the state machine 702 to direct the state machine
702 to operate in accord with various embodiments of the
invention. Those skilled in the art are familiar with instruc-
tions, processor(s), and storage media.

FIG. 8 depicts an exemplary computing device 800 that
may communicate with the system in an exemplary com-
puting environment, in some embodiments. The time server
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130 in FIG. 1 may be implemented as computing device 800.
Device 120 in FIG. 1 may be implemented as device 700 in
FIG. 7 or device 800 in FIG. 8 depending on the particular
desired environment. The computing device 800 comprises
a processor 802, a memory system 804, a storage system
806, an input/output (I/O) interface 808, and a communica-
tion interface 810, which are all coupled to a system bus 812.
Processor 802 is configured to execute executable instruc-
tions. In some embodiments, the processor 802 comprises
circuitry or any processor capable of processing the execut-
able instructions.

The memory system 804 is any memory configured to
store data. Some examples of the memory system 804 are
storage devices, such as RAM or ROM. The storage system
806 is any storage configured to retrieve and store data.
Some examples of the storage system 806 are flash drives,
hard drives, optical drives, and/or magnetic tape. The stor-
age system 806 may comprise a data structure configured to
hold and organize data.

The I/O interface 808 is any device that may receive data
from a client or provide data to the client. The I/O interface
808 may include, but is not limited to, a keyboard, a monitor,
a mouse, a speaker, a microphone, or a camera.

The communication interface 810 may be coupled to any
digital device via the link 814. The communication interface
810 may support communication over a Universal Serial
Bus (USB) connection, a firewire connection, an Ethernet
connection, a serial connection, a parallel connection, or an
Advanced Technology Attachment (ATA) connection. The
communication interface 810 may also support wireless
communication (e.g., 802.11 a/b/g/n or wireless USB). It
will be apparent to those skilled in the art that the commu-
nication interface 810 can support many wired and wireless
standards.

Some of the above-described functions can be composed
of instructions that are stored on storage media (e.g., com-
puter-readable medium). The instructions may be retrieved
and executed by the processor 802. Some examples of
storage media are memory devices, tapes, disks, integrated
circuits, and servers. The instructions are operational when
executed by the processor 802 to direct the processor 802 to
operate in accord with the invention. Those skilled in the art
are familiar with instructions, processor(s), and storage
media.

Conventional operating systems manage internal tasks
and external programs in a dictatorial manner, by preemp-
tively multitasking through threads and processes. Such a
system is flexible and general purpose in nature. However,
it may not be optimal since applications and unknown driver
components have little or no control over their scheduling.

In contrast to conventional operating systems, the oper-
ating system according to the various embodiments of the
system regards the whole environment as being inherently
cooperative and friendly. To that end, the whole system is
essentially a giant state machine. There is no executive, just
a cooperative state machine model. All systems and appli-
cations components are built together in an open and sym-
biotic relationship. Only components actually required in a
target system are built into the environment. For instance,
one would not generally find the game solitaire on a server
implementing embodiments of the present invention, as with
some network operating systems.

Running a state machine would not be like the method of
running time slices in a conventional pre-emptive system,
which is a very wasteful method. Some of the various
advantages provided by the state machine according to
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various embodiments are illustrated by an example of put-
ting together an internet server system which has the simple
task of running a web server.

In a conventional operating system, the kernel and other
systems components would comprise all the normal func-
tions of file and memory management, timers, input and
output, TCP/IP, etc. A web server would sit on top of the
TCP/IP stack which is itself sitting on top of the core
operating system stacks and drivers. In operation, the web
server would open a port on a socket on an IP address (e.g.
port 80) and listen( ) on that. There would be numerous
threads and processes going on in the background, as the
kernel executive cycles (usually somewhat uselessly)
around all the running processes, updating clocks, checking
communication ports, updating displays, checking on Eth-
ernet traffic, and so forth. In this way, the conventional
operating system provides a highly sophisticated and flex-
ible system, but with the downside of a tremendous number
of activities (and hence clock cycles and therefore energy)
going on all the time, just to run perhaps a simple web server.

In contrast, an implementation for this example according
to various embodiments of the system may include only the
required components (e.g., web server implementation fur-
ther described with respect to FIG. 5). As a result, execution
times and minimal code size would be optimized, resulting
in fewer energy cycles. Such a simple web server has just the
state machine running handling the lower operation of
receiving Ethernet packets up through the TCP/IP stack and
responding to HTTP requests. When no tasks need to be
done, the state machine is idle. In essence, the system
hardware is therefore designed for the good of the software,
and the software is designed for the good of the hardware.

One of the drawbacks of conventional general purpose
microprocessors is that opcodes are predefined and static.
Specifically, common opcodes are allocated to single byte
instructions, whereas less common, but perhaps more pow-
erful opcodes, are allocated to multiple byte opcode struc-
tures. This conventional approach provides flexibility, but is
not optimized. In contrast, a system builder according to
various embodiments of the present invention may dynami-
cally profile the code and build an optimal opcode set for the
microcode depending on the style of the programmer, in
order to minimize various required parameters, such as
energy cycles, code size, or a combination thereof. A library
for the pre-planned code segments may also be provided to
minimize overhead for the code.

The system may also attempt to identify what sub-
processes in a larger process system need to be executed
sequentially and which sub-processes might be executable in
parallel. The system may provide a simple state machine
model of a small number of cooperative elements. For more
complex systems, a State Machine Manager (SMM) may be
provided to regulate and control the run flow. In operation,
applications register priority and execution parameter
requests with the SMM, which in turn handles them accord-
ingly in a fair manner.

As described above, the CPU is not designed to be general
purpose. To that end, the more arcane commands and gates
that apply to a vast majority of applications are simply
removed. The design philosophy in regards to the opcode
instruction set is to design the operating system software
first, then optimize the operating system for building in
silicon. To that end, the system reuses as many pieces of
microcode pertaining to opcodes and opcode snippets as
possible.

In the conventional paradigm, the CPU is designed first
and thereafter an operating system is designed to run on the
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CPU. As a result, the operating system design is limited by
compromises dictated by the CPU chip design. The appli-
cations are then designed to run on the operating system. The
design of the applications is limited by all the limitations
dictated by the particular operating system design.

In contrast to this conventional design paradigm, the
present embodiments begin with the operating system
design. Any unnecessary aspects are removed for the design.
The CPU chip layout may then be designed. The design
process may be iterated to make still further reductions
down to the essential components. A program builder, which
essentially assembles (or may compile) and links and binds,
essentially compiles the mask for the microcode of the
Microprocessor.

Various embodiments of the system include a core CPU
chip with the operating system embedded, and may also
include different flavors of adjacent ‘personality’ chips
which are programmable with the high-level application
development translation utility. For example, the basic sys-
tem according to some embodiments may include just a core
CPU having the operating system embedded and an IEEE
802.11 Ethernet controller, but with no display or keyboard
drivers. In some embodiments, various elements are added
to the basic system individually or in combination including
micro web servers and browsers, SNMP agents, email
servers and clients, SMS servers and clients, etc. Other
elements that may be included in a system individually or in
combination include power supplies (direct and indirect),
and other connectivity options, such as ZigBee or Bluetooth
wireless capability, etc. The design and build process for
various embodiments of the system are targeted for reducing
gate count, maximizing cycle usage, and substantially reduc-
ing energy use.

In conventional systems, instruction pointers are only
incremented after a “program fetch,” when the micropro-
cessor reads the next instruction from memory. According to
another aspect of the present invention, an instruction
pointer register in the microprocessor may be decremented
as well as incremented. A string of opcodes may then be
executed forwards or backwards, i.e., providing executable
code capability. As a result, code may be reused to save
space by running some code backwards.

In conventional systems, a code byte is read from the
instruction pointer address and executed, or another byte is
read depending on the opcode, etc. The instruction pointer
may be revectored automatically by, for example, executing
a JUMP instruction. According to another embodiment of
the present invention, the instruction pointer may be revec-
tored by a higher-level instruction pointer manager in the
core CPU microcode. That is, the CPU design provides that
a higher-level instruction pointer manager can force a jump
in the instruction pointer to execute preferable code. This
revectoring provides a different mechanism over and above
a standard software or hardware interrupt controller.

Depending on the particular hardware design implemen-
tation, binary ‘1’s or ‘0’s may take more or less power to
support. According to another aspect, an optimizing code
generator may dynamically analyze the opcode and data
binary structures and switch accordingly to the most energy
efficient implementation of binary 1’s and 0’s. In other
words, the microprocessor design mask may be optimized
for binary 1’s and 0’s, depending on whether a majority of
1’s or 0’s may produce a lower overall power consumption.

According to various embodiments, the system and oper-
ating system code executes in ROM. The ROM-execution,
execution as a state machine, and the saving of register
contents during deep sleep provide an “instant-on” capabil-
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ity where it may take just milliseconds for the system to
resume execution. RAM memory may be used for only truly
read-write data that requires it. The execute-only code needs
only to be in ROM. The slower access times of ROM
devices versus RAM devices are not an issue because the
instruction cycle times for the system are generally slow,
albeit for a reduced number of cycles.

According to another aspect, the system eliminates
wasted internal clock cycles through the use of intelligent
tasking, in contrast to multi-tasking. The intelligent tasking
may include having pre-plan code nests in the CPU, so that
different steps of different code streams can execute in the
‘gaps’ inevitably left in their processes. For example, for a
code stream a and code stream b as follows:

Code Stream a:

DO ... WAIT ... WAIT . . . WAIT . . . WAIT . ..
DO...DO... WAIT... WAIT ... WAIT ... DO

Code Stream b:

WAIT ... WAIT...DO...DO...DO... . WAIT...
WAIT ... WAIT ... DO ... WAIT ... WAIT

The intelligent tasking interleave these code streams
intelligently to greatly reduce the inefficient wait cycles as
follows: DO ... WAIT . . .DO .. .DO ...DO ...
DO...DO...WAIT...DO...WAIT...DO

The ultra-low energy and size reduction provided by the
system according to the present invention may make it
feasible to include embedded Internet capability in a whole
range of devices that would otherwise lack it due to the
conventional micro-controllers being too big and consuming
too much power. The system may reduce power consump-
tion from Watts to microWatts, or perhaps even to
nanoWatts. For example, some light bulbs and switches may
be Internet-enabled for the first time using embodiments of
the system.

Turning to further details regarding the software imple-
mentation, the operating system software may be completely
developed in native assembler. The fundamentally overrid-
ing requirement for the system is to aim for the utmost
performance, in everything from code size, ROM-execution,
reversible code, clock (energy) cycle counting, and so forth.
The system has no conventional requirement for “easy
portability”, which would normally point to a ‘C” or C++
based implementation that can be easily ported. In contrast,
porting the system to a new microprocessor entails recoding
the assembler implementation for a new microprocessor, a
straight-forward task for those skilled in the art.

The system may implement, at the lowest level of secu-
rity, SSL, i.e., HT'TPS for web browsing. At a higher level,
S-HTTP may be implemented for web browsing. The system
may also implement a lightweight real time streaming
protocol (“LDF”). This protocol may be used for data as well
as “command and control.” Data packets may be easily
encrypted at several levels from easy-low to secure-high,
e.g., private/public key encryption.

The system may include ultra low power microproces-
sors, tiny embedded Internet operating systems, and asso-
ciated software products, such as Software Development
Kits (SDKs) to enable third parties to develop applications,
and application suites for managing devices. Various appli-
cation areas for the system include, but are not limited to,
clean tech (green energy), medical, military, aerospace,
automotive, Smartphone, Personal Digital Assistant (PDA),
Pocket Computer, and so forth. In the clean tech area, for
example, one application for the system of the present
invention may be “a tiny Internet chip in every light bulb.”
Such a chip-in-a-light bulb could, for instance, be wired
directly from an available “free” 240V or 110V AC voltage
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supply, utilizing N-type Metal Oxide Semiconductor
(NMOS) for providing “super-strong” high voltage and very
low current consumption chips. In some embodiments, an
inductor may be used to generate isolated low voltage from
the power line AC cycles. The network traffic may be
transmitted over the power line. One of the advantages of the
present system for a chip-in-a-light bulb application is that
low data rates can be used to handle the anticipated light data
traffic.

Electrical devices in a house or office, such as light bulbs,
switches and plugs which use the present system, could be
carefully monitored and controlled from a smart meter or
desktop web browser. The devices may have the present
system implement a micro web server embedded for com-
mand and control. A web browser or SNMP management
program could display all such devices in a local smart grid,
monitor them, turn them on and off, reduce power, schedule
the device to run at the most efficient and economical time
(e.g., a dishwasher) etc.

Exemplary medical applications include use of the present
system for stents. A stent is a synthetic tube inserted into a
natural passage/conduit in the body to prevent, or counter-
act, a disease-induced, localized flow constriction. A tiny
chip implementing an embodiment of the present system
could be built into each stent along with a tiny ultra long life
and low power RF transmitter/receiver. The modified stent
could send data about the state of the artery in realtime over
the wireless Internet, such that a patient’s condition can be
monitored live, perhaps 24 hours a day.

The present system could also be used for other medical
patient monitoring applications where the small size, low
power and Internet monitoring aspects would provide enor-
mous benefits, e.g., use in a “digital plaster” stuck to a
patient’s body to track vital signs (such as heart rate and
breathing) and then send alerts to doctors over the Internet.

The present system may provide ultra low power Internet
operating system and microprocessor products for use in
many other product areas, such as military, acrospace, and
automotive, as well as next-generation Smartphones, PDAs,
Pocket Computers. Currently unknown new classes of appli-
cations may be made possible by the present system. Other
exemplary applications include low power devices needed
for unmanned and manned missions to other planets and
new network architectures for motor vehicles.

The ultra low power aspect of the present system may
provide greatly improved battery life for various devices.
Boot up time for devices may be greatly reduced by execut-
ing instructions from ROM, saving general state information
in battery-backed SRAM, and saving crucial microprocessor
register setting and other state information saved in special
registers in custom ASICs, for example.

Chips implementing the present system may communi-
cate over various means including but not limited to: stan-
dard twisted pair Ethernet, coax, ZigBee, Bluetooth, Low
Power Bluetooth, and perhaps wireless Ethernet. A server
embedded in the dongle of a twisted pair Ethernet connector
could be one of the countless potential applications for the
present system

The system may include software development tools for
the operating system and the microprocessor chip design,
e.g. assembler, linker, BIN-to-ROM tools, debugger, etc.

A full Internet Protocol stack typically includes an appli-
cation layer, transport layer, internet layer, and link layer.
The basic operating system for the present system may not
normally have all the components of a full Internet Protocol
stack. A basic kernel may have for example just HTTP on

20

25

30

35

40

45

50

55

60

65

14

top of TCP on top of IP on top of Ethernet. Alternatively, the
kernel may be built with SNMP on UDP on IP on Ethernet.

Conventionally, TCP/IP is not an operating system, but a
communications stack, typically using a Berkeley Sockets
(or WinSock) style API. A simple sequence for a web server
for Windows would include: 1. Initialize Winsock; 2. Create
a socket; 3. Bind the socket; 4. Listen on the socket for a
client; 5. Accept a connection from a client; 6. Receive and
send data; and 7. Disconnect.

According to various embodiments, the operating system
API for the system is uniquely, purely Sockets-based. Since
it is also Assembler-based, the normal ‘C’ based Sockets
APIs are replaced with custom register-based analogies.
Parameter passing of other programming languages may be
replaced by microprocessor register passing.

The operating system kernel is built per application to
include only the necessary APIs. The kernel also may
provide a configurable set of built-in device drivers and
application modules. The built-in device drivers may
include, for example, drivers for console display, graphics
display, html, xml, keyboard, mouse, serial port, USB port,
and Ethernet. Other built-in and API application functions
may include SMS, email, Twitter, Facebook, MySpace, Call,
and Search (e.g., Google, Bing).

For applications such as clean tech, such as smart light
bulbs and switches, a new protocol at the low level of the
Internet Control Message Protocol (ICMP) may be devised
to poll and control smart devices. Such a protocol lies a little
above the IP layer, but well below protocols such as UDP or
TCP. There is not necessarily the need to have the overhead
of a full TCP implementation or a conventional SNMP
module. Advantages of the new protocol include a smaller
kernel, and a communications protocol optimized to the
particular requirements.

Alternatively, SNMP and a web server may be used (see
FIG. 4A as described above). This would be akin to the way
it has long been possible to control a router or printer over
the internet, by connecting to the URL or IP address of the
device. With the present system, this would be possible for
any device, no matter how small or cheap.

Microprocessor opcode may be optimized for implemen-
tations. A minimal opcode set may form the basis of the
operating system/CPU instruction set. Many x86 opcodes,
for example, may basically not be used at all in an optimal
implementation of a highly Internet-centric system of the
present invention. Such extraneous opcodes waste transis-
tors in a CPU and therefore are not included in the minimal
set. Conversely, there are some operations which are often
used in an internet software implementation, such as Internet
Checksum calculations, IP address parsing, CRC number
generation, and packet deconstruction which could be opti-
mized even as single opcodes.

The terms “computer-readable storage medium” and
“computer-readable storage media” as used herein refer to
any medium or media that participate in providing instruc-
tions to a CPU for execution. Such media can take many
forms, including, but not limited to, non-volatile media,
volatile media and transmission media. Non-volatile media
include, for example, optical or magnetic disks, such as a
fixed disk. Volatile media include dynamic memory, such as
system RAM. Transmission media include coaxial cables,
copper wire and fiber optics, among others, including the
wires that comprise one embodiment of a bus. Transmission
media can also take the form of acoustic or light waves, such
as those generated during radio frequency (RF) and infrared
(IR) data communications. Common forms of computer-
readable media include, for example, a floppy disk, a flexible
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disk, a hard disk, magnetic tape, any other magnetic
medium, a CD-ROM disk, digital video disk (DVD), any
other optical medium, any other physical medium with
patterns of marks or holes, a RAM, a PROM, an EPROM,
an EEPROM, a FLASHEPROM, any other memory chip or
cartridge, a carrier wave, or any other medium from which
a computer can read.

Various forms of computer-readable media may be
involved in carrying one or more sequences of one or more
instructions to a CPU for execution. A bus carries the data
to system ROM (or RAM), from which a CPU retrieves and
executes the instructions. The instructions received by sys-
tem ROM (or RAM) can optionally be stored on a fixed disk
either before or after execution by a CPU.

The above description is illustrative and not restrictive.
Many variations of the invention will become apparent to
those of skill in the art upon review of this disclosure. The
scope of the invention should, therefore, be determined not
with reference to the above description, but instead should
be determined with reference to the appended claims along
with their full scope of equivalents.

While the present invention has been described in con-
nection with a series of preferred embodiments, these
descriptions are not intended to limit the scope of the
invention to the particular forms set forth herein. It will be
further understood that the methods of the invention are not
necessarily limited to the discrete steps or the order of the
steps described. To the contrary, the present descriptions are
intended to cover such alternatives, modifications, and
equivalents as may be included within the spirit and scope
of the invention as defined by the appended claims and
otherwise appreciated by one of ordinary skill in the art.

What is claimed is:

1. A method comprising: receiving, by an operating
system embedded within and executing within a central
processing unit (CPU), input/output (1/O) requests, the oper-
ating system comprising an operating system kernel based
on a network protocol stack for processing the /O requests
according to at least one network protocol, wherein process-
ing of all /O requests utilizes a sockets style application
programming interface (API), and wherein the network
protocol stack comprises a Transmission Control Protocol/
Internet Protocol (TCP/IP) stack such that the operating
system consists of a TCP/IP stack state machine.

2. The method of claim 1, wherein processing the 1/O
requests comprises communicating data via a network inter-
face, the network interface comprising one of an Ethernet
controller and a wireless interface.

3. The method of claim 1, wherein executable instructions
for the operating system are stored in memory of the CPU
and executed through the sockets style application program-
ming interface (API).

4. The method of claim 3, further comprising accessing
via the sockets style API one or more of a keyboard input
device and a display output device.

5. A computing system comprising: a central processing
unit (CPU) comprising an operating system (OS) embedded
therein, the operating system comprising an operating sys-
tem kernel based on a network protocol stack that processes
1/0 requests according to at least one network protocol,
wherein processing of all /O requests utilizes a sockets style
application programming interface (API), and wherein the
network protocol stack comprises a Transmission Control
Protocol/Internet Protocol (TCP/IP) stack such that the
operating system consists of a TCP/IP stack state machine.
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6. The computing system of claim 5, further comprising
anetwork interface that further comprises one of an Ethernet
controller and a wireless interface.

7. The computing system of claim 5, wherein executable
instructions for the operating system are embedded within
the CPU and execute through the sockets style application
programming interface (API).

8. The computing system of claim 5, wherein executable
instructions for the operating system are stored solely in read
only memory (ROM).

9. The computing system of claim 5, further comprising
an asynchronous clock to serve as an internal clock for the
operating system.

10. The computing system of claim 9, wherein the asyn-
chronous clock is configurable to automatically stop when
clock cycles are not needed.

11. The computing system of claim 5, wherein a time
reference for the operating system kernel is based on a
Simple Network Time Protocol (SNTP) from a remote time
server coupled to a network, which is communicatively
coupled with the computing system.

12. The computing system of claim 11, wherein the
network further comprises the Internet.

13. The computing system of claim 5, wherein instruc-
tions for the operating system, executable by the central
processing unit and stored in read only memory, are written
in assembly language.

14. A chip comprising:

a central processing unit (CPU); and

an operating system embedded in the CPU, the operating

system comprising an operating system kernel based on
a network protocol stack for processing input/output
(I/0) requests, wherein processing of all /O requests
utilizes a sockets style application programming inter-
face (API), and wherein the network protocol stack
comprises a Transmission Control Protocol/Internet
Protocol (TCP/IP) stack such that the operating system
consists of a TCP/IP stack state machine.

15. The chip of claim 14, wherein executable instructions
for the operating system are stored solely in and execute
solely from read only memory (ROM) and execute through
the sockets style application programming interface (API).

16. The chip of claim 14, further comprising an asyn-
chronous clock to serve as an internal clock for the operating
system kernel.

17. A non-transitory computer-readable storage media
having embodied thereon an operating system, the operating
system executable by a processor to handle input/output
(I/O) requests, the operating system consisting of: an oper-
ating system kernel that consists of: a sockets layer, a
transmission control protocol (TCP) layer, an Internet Pro-
tocol (IP) layer, and a driver layer, the operating system
kernel handling I/O requests between at least one application
and at least one hardware resource of a computing device;
wherein processing of all /O requests utilizes a sockets style
application programming interface (API).

18. The storage media of claim 17, wherein the non-
transitory computer-readable storage media comprises a
ROM of a computing device.

19. The storage media of claim 17, wherein the at least
one application is executed on an additional computing
device that is located remotely from the computing device
that comprises the at least one hardware resource.

20. The storage media of claim 17, wherein the operating
system kernel binds the at least one hardware resource to an
open socket of the sockets layer.
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