a2 United States Patent

Cullimore et al.

US008875276B2

US 8,875,276 B2
*Qct. 28, 2014

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

@
(22)

(65)

(1)

(52)

(58)

ULTRA-LOW POWER SINGLE-CHIP
FIREWALL SECURITY DEVICE, SYSTEM
AND METHOD

Inventors: Ian Henry Stuart Cullimore,
Leominster (GB); Jeremy Walker,
Redwood City, CA (US)

Assignee: IOTA Computing, Inc., Palo Alto, CA
(US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/225,233

Filed: Sep. 2,2011
Prior Publication Data
US 2013/0061313 Al Mar. 7, 2013
Int. CI.
HO4L 29/02 (2006.01)
GOGF 15/16 (2006.01)
HO04L 29/06 (2006.01)
GO6F 1/32 (2006.01)
U.S. CL
CPC ... HO4L 63/0209 (2013.01); HO4L 63/0227
(2013.01); GO6F 1/3237 (2013.01)
USPC i 726/13; 726/11; 726/12
Field of Classification Search
CPC HO4L 63/0227, HO4L 63/0209; GO6F
1/3237
USPC e 726/11-13

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,469,553 A * 11/1995 Patrickoovvvvvvenrenn.. 713/323
5,493,689 A * 2/1996 Waclawskyetal. 710/1
5,710,910 A 1/1998 Kehl et al.
5,896,499 A 4/1999 McKelvey
5,968,133 A * 10/1999 Lathametal. ... 709/248
6,714,536 Bl 3/2004 Dowling

(Continued)

FOREIGN PATENT DOCUMENTS

CN 1622517 *6/2005 GOG6F 3/00
EP 1213892 A2 6/2002
(Continued)
OTHER PUBLICATIONS

Quan Huang et al.: “Embedded firewall based on network processor”,
2005, IEEE, Proceedings of the Second International Conference on
Embedded Software and Systems (ICESS’05), 7 pages.*

(Continued)

Primary Examiner — Catherine Thiaw
(74) Attorney, Agent, or Firm — Carr & Ferrell LLP

57 ABSTRACT

A firewall security device, system and corresponding method
are provided that includes an operating system of an entirely
new architecture. The operating system is based fundamen-
tally around a protocol stack (e.g., TCP/IP stack), rather than
including a transport/network layer in a conventional core
operating system. The firewall security device may include a
processor and an operating system (OS) embedded in the
processor. The OS may include a kernel. The operating sys-
tem kernel is a state machine and may include a protocol stack
for communicating with one or more devices via a network
interface. The OS may be configured to receive and transmit
data packets and block unauthorized data packets within one
or more layers of the protocol stack based on predetermined
firewall policies.

21 Claims, 8 Drawing Sheets

600 ;)

RECEIVE A DATA PACKET

f—610

k.

PROCESS THE DATA PACKET

f——— 620

l_YE

\ TRANSMIT THE DATA
PACKET

640

DATA PACKET 18
AUTHORIZED?

NO

BLOCK THE DATA 650
PACKET r

US 8,875,276 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

7,002,979 B1*
7,036,064 Bl *

2/2006 Schneider et al. 370/412
4/2006 Kebichi et al. 714/744

7,055,173 B1* 5/2006 Chaganty etal. 726/11
7,076,803 B2 7/2006 Bruton, III et al.

7,246,272 B2* 7/2007 Cabezasetal. 714/53
7,308,686 B1* 12/2007 Fotland et al. 718/102
7,333,437 Bl 2/2008 Glick

7,334,124 B2* 2/2008 Phametal. 713/162
7,363,369 B2 4/2008 Banerjee et al.

7,424,710 Bl 9/2008 Nelson et al.

7,509,673 B2* 3/2009 Swanderetal. ... 726/11
7,568,030 B2 7/2009 Banerjee et al.

7,657,933 B2 2/2010 Hussain et al.

7,694,158 B2 4/2010 Melpignano et al.

7,734,933 Bl 6/2010 Marek et al.

7,770,179 B1* 8/2010 James-Roxbyetal. ... 719/312
7,886,340 B2* 2/2011 Carleyccccovvvvrvrnrenne. 726/3
8,055,822 B2 11/2011 Bernstein et al.

8,132,001 B1* 3/2012 Pattenetal. 713/164
8,335,864 B2 12/2012 Cullimore

8,607,086 B2 12/2013 Cullimore

2002/0007420 Al
2002/0167965 Al
2003/0084190 Al 5/2003 Kimball

2004/0049624 Al 3/2004 Salmonsen

2004/0093520 Al* 5/2004 Leeetal.occoovevvennnnn 713/201
2004/0143751 Al 7/2004 Peikari

2004/0210320 Al* 10/2004 Pandyaccccomnrene. 700/1
2004/0249957 Al 12/2004 Ekis et al.

2006/0026162 Al 2/2006 Salmonsen et al.

2006/0123123 Al 6/2006 Kim et al.

2006/0133370 Al 6/2006 Eldar

2007/0008976 Al 1/2007 Meenan

2007/0022421 Al 1/2007 Lescouet et al.

2007/0118596 Al 5/2007 Patiejunas

2007/0211633 Al 9/2007 Gunawardena et al.
2007/0255861 Al 11/2007 Kain et al.

2008/0046891 Al 2/2008 Sanchorawala et al.
2008/0109665 Al* 5/2008 Kuhlmannetal. 713/300
2008/0177756 Al 7/2008 Kosche et al.

2009/0126003 Al 5/2009 Touboul

2009/0158299 Al 6/2009 Carter

2009/0217020 Al 8/2009 Yourst

2009/0235263 Al 9/2009 Furukawa

2010/0005323 Al 1/2010 Kuroda et al.

2010/0115116 Al 5/2010 Asnaashari

2010/0131729 Al* 5/2010 Fulcherietal. 711/163
2010/0185719 Al 7/2010 Howard

2010/0192225 Al* 7/2010 Maetal.cooevvrnnnnn.. 726/23
2011/0002184 Al 1/2011 Kim

2011/0088037 Al 4/2011 Glistvain

2011/0107357 Al 5/2011 Cullimore

2012/0017262 Al 1/2012 Kapoor et al.

2012/0042088 Al 2/2012 Cullimore

2013/0061070 Al 3/2013 Cullimore

2013/0061078 Al 3/2013 Cullimore

2013/0061283 Al 3/2013 Cullimore et al.

1/2002 Eydelman et al.
11/2002 Beasley et al.

FOREIGN PATENT DOCUMENTS

EP 2497003 9/2012
™ 200924424 6/2009
WO W0O/2011056808 * 52011 GO6F 3/00
WO WO 2013/032660 3/2013
WO WO 2013/032661 3/2013

OTHER PUBLICATIONS
Tan et al., “A Simulation framework for energy-consumption analy-
sis of OS-driven embedded applications”, IEEE, 2003.*
Luca Benini et al., Finite-state machine partitioning for low power,
IEEE, 1998.*
Huang Q. et al., “An embedded firewall based on netwok processor”,
Proceedings of the Second linternational Conference on Embedded
Software and System,, IEEE, 2005.*

Stelios Antoniou: “Networking Nasics: TCP, UDP, TCP/IP and OSI
model”, Oct. 29, 2007, 8 pages.*

Anbh et al. “Real-Time Operating Systems for Small Microcontrol-
lers,” IEEE Micro, Sep.-Oct. 2009. vol. 29, No. 5, p. 30-45.
[Accessed Feb. 15, 201 1—IEEExplore] http://iceexplore.icee.org/
xpis/abs__all jsp?arnumber=5325154.

Ashkenazi et al. “Platform Independent Overall Security Architec-
ture in Multi-Processor System-on-Chip ICs for Use in Mobile
Phones and Handheld Devices,” World Automation Congress, Jul.
24-26, 2006. [Accessed Feb. 18, 2011—FEngineering Village].
Bathen et al. “Inter and Intra Kemel Reuse Analysis Driven Pipeline-
ing on Chip-Multiprocessors,” Intemational Symposium on VLSI
Design, Automation and Test, Apr. 26-29, 2010. p. 203-207.
[Accessed Feb. 16, 201 1—IEEExplore] http://iceexplore.icee.org/
xpis/abs all jsp?amumber=5496725.

Bolchini et al. “Smart Card Embedded Information Systems: A
Methodology for Privacy Oriented Architectural Design,” Data &
Knowledge Engineering, 2002. vol. 41, No. 2-3, p. 159-182.
[Accessed Feb. 16, 201 1—ScienceDirect.com].

Cavium Networks, “Nitrox® DPI L7 Content Processor Family,”
Accessed on Feb. 16, 2011 at http://www.caviumnetworks.com/pro-
cessor NITROX-DPILhtml.

Cavium Networks, “Nitrox® Lite,” Accessed on Feb. 16, 2011 at
http://www.caviumnetworks.com/processor__securitLnitroxLite.
htm.

Ferrante et al. “Application-Driven Optimization of VLIW Architec-
tures: A Hardware-Software Approach,” 11th IEEE Real Time and
Embedded Technology and Applications Symposium, Mar. 7-10,
2005. p. 128-137. [Accessed Feb. 15, 2011—IEEExplore] http://
ieeexplore.ieee.org/xpls/abs_ all.jsp?arnumber=1388380.

“IP Multimedia Subsystems,” Freescale Semiconductor, 2006. (bro-
chure) [Accessed Feb. 16, 2011] http://cachelreescale.com/files/
32biUdoc/brochure/BRIMSSOLUTIONS.pdf.

Green Hills Software, “1-I-velOSityTM Real-Time Microkemel,”
Accessed on Feb. 16, 2011 at http://www.ghs.com/products/micro__
velosity.html.

“u-velOSity Microkemel,” (datasheet) Green Hills Software, Inc.,
2006.

Hattori. “Challenges for Low-Power Embedded SOC’s,” Interna-
tional Symposium on VLSI Design, Automation and Test, Apr. 25-27,
2007. p. 1. [Accessed Feb. 16, 201 1—IEEExplore] http://iceexplore.
ieee.org/xpis/abs__ all jsp?arnumber=4239406.

Joumal of Techonology & Science, “Express Logic, Inc.; Express
Logic and IAR Systems Team Up to Provide ThreadX RTOS Support
in TAR Embedded Workbench IDE for Freescale ColdFire,”
Accessed on Feb. 16, 2011 at http://proquest.umi.com.mutex.gmu.
edu/pqdweb?index=7 &did=1541305

Kakaountas et al. “Implementation of HSSec: A High-Speed Cryp-
tographic Co-Processor,” IEEE Conference on Emerging Technolo-
gies and Factory Automation, Sep. 25-28, 2007. p. 625-631.
[Accessed Feb. 16, 201 1—IEEExplore] http://iceexplore.icee.org/
xpls/abs__all jsp?amumber=4416827.

Ke et al. “Design of PC/1 04 Processor Module Based on ARM,”
International Conference on Electrical and Control Engineering, Jun.
25-27, 2010. p. 775-777. [Accessed Feb. 17, 2011—IEEExplore]
http://ieeexplore.icee.org/xpis/abs_ all.jsp?arnumber=5630566.
Kinebuchi et al. “A Hardware Abstraction Layer for Integrating Real-
Time and General-Purpose with Minimal Kernel Modification,” Soft-
ware Technologies for Future Dependable Distributed Systems, Mar.
17,2009.p. 112-116. [Accessed Feb. 16, 201 1—IEEExplore] http://
ieeexplore.ieee.org/xpls/abs_ all.jsp?arnumber=4804582.

Tabari, et al. “Neural Network Processor for a FPGA-based
Multiband Fluorometer Device,” International Workshop on Com-
puter Architecture for Machine Perception and Sensing, Aug. 18-20,
2006. p. 198-202. [Accessed Feb. 16, 201 1—IEEExplore] http://
ieeexplore.ieee.org/xpls/abs_ all.jsp?amumber=4350381.

Wang et al. “Towards High-Performance Network Intrusion Preven-
tion System on Multi-core Network Services Processor,” 15th Inter-
national Conference on Parallel and Distributed Systems, Dec. 8-11,
2009. p. 220-227. [Accessed Feb. 16, 201 1—IEEExplore].

Wong, William, “16-Bit MCU Invades 8-Bit Territory with 4-By
4-mm Chip,” Electronic Design, Sep. 29, 2005. vol. 53,No. 21, p.32.
[Accessed Feb. 16, 201 1—Academic Search Complete].

US 8,875,276 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

“Yoggie Pico Personal Security Appliance,” www.yoggie.com.
(archived on May 31, 2009) [Accessed Feb. 16,201 1—Archive.org].
“Yoggie Security Unveils Miniature Hardware Appliance,” www.
yoggie.com. (archived on May 31, 2009) [Accessed Feb. 16,2011—
Archive.org].

“Yoggie Unveils Miniature Internet Security Devices for Mac Com-
puters,” M2 Telecomworldwire,Oct. 14, 2008. [Accessed Feb. 18,
201 1—Academic Source Complete].

Tan et al.: “A simulation framework for energy-consumption analysis
of OS-driven embedded applications,” IEEE, vol. 22, No. 9, Sep.
2003.

International Search Report and Written Opinion mailed Dec. 30,
2010 in Patent Cooperation Treaty application No. PCT/US10/
55186, filed Nov. 2, 2010.

International Search Report and Written Opinion mailed Sep. 12,
2012 in Patent Cooperation Treaty application No. PCT/US12/
50107, filed Aug. 9, 2012.

International Search Report and Written Opinion mailed Oct. 16,
2012 in Patent Cooperation Treaty application No. PCT/US12/
50101, filed Aug. 9, 2012.

Mukherjee. “A Runtime Framework for Parallel Programs” [Online].
Dated Aug. 16, 2006. Retrieved on Sep. 24, 2012. Retrieved from the
internet at URL: <http://citeseerx.ist.psu.edu/viewdoc/down-
load?doi=10.1.122.6849&rep=rep1&type=pdf>, entire document,
especially p. III.

Jiang Min. “A design of embedded terminal unit based on ARM and
Windowa CE”, ICEMI, 8th International Conference on Electronic
Measurement and Instruments, 2007, pp. 2-336 to 2-340.

Wang et al. “A survey of embedded operating system”, 2001, ceit.
aut.ac.ir.

LINFO: “Embedded system definition”, Linux Information Project,
2006.

Extended European Search Report mailed Apr. 3, 2013 in European
Patent application No. 10828991.9, filed Nov. 2, 2010.

* cited by examiner

U.S. Patent Oct. 28, 2014 Sheet 1 of 8 US 8,875,276 B2

EDGE DEVICE

|
| |
| |
| |
| |
| |
| |
| 120 |
| FIREWALL SECURITY |
| DEVICE |
| |
| |
| |
| |
| |
| |

APPLICATIONS
122

OPERATING SYSTEM
124

HARDWARE
126

NETWORK

CLIENT DEVICE CLIENT DEVICE CLIENT DEVICE

FIG. 1

U.S. Patent Oct. 28, 2014 Sheet 2 of 8 US 8,875,276 B2
200;)
Memory
210

I/0 I/0 N _i
Protocol | Network |

Request) Request l
. Handling . Interface |

Receiver Processing l
Module Module |

Module 230 Module l 250

220 £28 240 | == :

State Machine

260

FIG. 2

U.S. Patent Oct. 28, 2014 Sheet 3 of 8 US 8,875,276 B2
120
320 310 320
NIC PROCESSOR NIC

FIG. 3

U.S. Patent Oct. 28, 2014 Sheet 4 of 8

US 8,875,276 B2

UART

120
320 310 320
NIC PROCESSOR NIC
410

FIG. 4

U.S. Patent Oct. 28, 2014 Sheet 5 of 8 US 8,875,276 B2

-
N
(e}

10

[$)]
—
[en]
(8]
N
o

PROCESSOR ROM RAM

Co
N
o]
G0
N
o]

- |

NIC IC

o
—
o

UART

FIG. 5

U.S. Patent Oct. 28, 2014 Sheet 6 of 8 US 8,875,276 B2

600 P

610
RECEIVE A DATA PACKET '

A 4

620
PROCESS THE DATA PACKET [

DATA PACKET IS
AUTHORIZED?

NO

l YES
640
\ TRANSMIT THE DATA BLOCK THE DATA 650
PACKET PACKET r

FIG. 6

U.S. Patent Oct. 28, 2014 Sheet 7 of 8 US 8,875,276 B2
710
WAN
700 730A
PORT
l
120
FIREWALL
SECURITY
DEVICE
]
750
SWITCH
730B 730C 730D 730E 740 T
PORT PORT PORT WTRU
T ———
/ _—\
720
LAN

FIG.7

U.S. Patent

Oct. 28,2014 Sheet 8 of 8 US 8,875,276 B2
800
50
SWITCH
120 120 120 120 120
FIREWALL FIREWALL {| FIREWALL | | FIREWALL FIREWALL
730A 7308 730C 730D 740
PORT PORT PORT PORT WTRU
710 720
WAN LAN

FIG. 8

US 8,875,276 B2

1
ULTRA-LOW POWER SINGLE-CHIP
FIREWALL SECURITY DEVICE, SYSTEM
AND METHOD

CROSS REFERENCES TO RELATED
APPLICATIONS

This nonprovisional patent application is related to U.S.
patent application Ser. No. 12/938,290, filed Nov. 2, 2010,
titled: “TCP/IP Stack-Based Operating System”, which is
hereby incorporated by reference in its entirety.

FIELD OF THE INVENTION

This application relates generally to computing systems
and, more particularly, to a firewall security device, system,
and method based on a protocol stack operating system.

BACKGROUND

Communication networks are widely deployed to provide
communication services, such as transmitting packet data,
multimedia, voice, video, broadcast, and the like. Tradition-
ally, networks such as the Internet are configured to provide
communication services between different computing sys-
tems and/or computers, servers, hosts, portable devices,
mobile phones, and other consumer electronic devices via
wired and/or wireless networking technologies. Network
communication may be facilitated by standard communica-
tion transport protocols such as the Transmission Control
Protocol/Internet Protocol (TCP/IP), the User Datagram Pro-
tocol/Internet Protocol (UDP/IP), or similar transport proto-
cols.

One issue experienced by computing devices and systems
using these communication transport protocols relates to
issues of malicious attacks, unauthorized accesses, and the
like. To address this issue, computing systems typically uti-
lize a firewall controlling the data flow and preventing access
by unauthorized users.

A firewall is a software application, hardware, or a combi-
nation thereof that controls network traffic between networks
or hosts and allows or blocks specific data packets based on a
comparison of network traffic characteristics to the existing
policies. Several types of firewall technologies are available.
Typically, firewalls operate on one or more TCP/IP layers
which include an application layer, a transport layer, a net-
work layer (also known as an IP layer), and a physical layer
(also known as a hardware layer or link layer).

Network-layer firewalls operate at a relatively low level of
the TCP/IP protocol stack, not allowing packets to pass
through the firewall unless the packets match the established
rule set. However, network-layer firewalls cannot make more
complex decisions based on which stage of communications
has been reached between hosts.

Application-layer firewalls work on the application level of
the TCP/IP stack, and may intercept packets traveling to or
from an application. Generally, an application firewall can
prevent unwanted outside traffic from reaching a protected
device. However, one disadvantage of application-layer fire-
walls is their effect on performance of the devices protected.
Examining the contents of packets requires time and thus
slows down processing. Another disadvantage of application-
layer firewalls is administrative overhead. Because applica-
tion-layer firewalls add complexity, there is a potential for
misconfiguration, which leads to access issues and could also
lead to blocking communications that were never intended to
be blocked.

20

25

30

35

40

45

50

55

60

65

2

Advanced firewalls that combine lower-layer access con-
trol with upper-layer functionality are also widely utilized.
One example of such an advanced firewall includes applica-
tion-proxy gateways. However, application-proxy gateways
also experience the above-mentioned complexity problems,
which cause a reduction in overall performance.

The causes of the performance problems relate to the anti-
quated design of conventional computing devices practicing
firewall features. Typically, these devices and other conven-
tional operating systems follow similar architectures, includ-
ing a layered design, device drivers, and Application Pro-
gramming Interfaces (APIs).

Moreover, conventional processor designs use a fixed-fre-
quency, continuously running crystal as the timing mecha-
nism for clocking through processor execution cycles. Thus,
the crystal and the microprocessor continue running even if
nothing is being accomplished in the system, uselessly
cycling around and waiting for a process to actually perform
an action (e.g., process an incoming TCP/IP packet at the
Ethernet interface). The foregoing architecture is inefficient
in two respects. First, the crystal and microprocessor transis-
tors typically execute at their maximum speed at all times,
thereby consuming excess power and generating excess heat.
Secondly, it is inefficient to continue running clock cycles if
no substantive process is actually running.

Furthermore, conventional operating systems require vari-
ous modifications and enhancements each year, such as incor-
poration of new communications layers for Ethernet drivers,
TCP/IP stacks, Web browsers, and the like. Generally, these
new layers are added on top of the conventional operating
system, thereby increasing complexity, decreasing perfor-
mance, and leading to software crashes and security flaws.

SUMMARY

This summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This summary is not intended to
identify key features or essential features of the claimed sub-
jectmatter, nor is it intended to be used as an aid in determin-
ing the scope of the claimed subject matter.

In accordance with various embodiments disclosed herein,
a firewall security device is provided that includes an operat-
ing system of an entirely new architecture. This operating
system may be based fundamentally around the TCP/IP stack
(instead of including a TCP/IP layer as in a conventional core
operating system) and utilize a conventional interface or simi-
lar extensions of the standard Berkeley Sockets (or WinSock)
APL

In one embodiment, a firewall security device is provided.
The firewall security device comprises a processor and an
operating system (OS) embedded in the processor. The OS
may comprise a kernel. The OS kernel may include a state
machine comprising a protocol stack for communicating with
one or more devices via a network interface. Based on pre-
determined firewall policies, the OS may be configured to
receive and transmit data packets and block unauthorized data
packets.

In an example, the network interface may comprise at least
one Network Interface Controller (NIC) coupled to the pro-
cessor. The firewall security device may further comprise a
Universal Asynchronous Receiver/Transmitter (UART)
coupled to the processor. The firewall security device may
further comprise a memory coupled to the processor. The
memory may comprise one or more of a read only memory
(ROM) and a random access memory (RAM). The memory
may store instructions executable by the processor. The

US 8,875,276 B2

3

instructions may comprise predetermined firewall policies
for transmitting or blocking data packets. The protocol stack
may comprise a TCP/IP stack.

According to another example, the protocol stack may
comprise a UDP/IP stack. The firewall security device may
further comprise an asynchronous clock to serve as an inter-
nal clock for the operating system kernel. The asynchronous
clock may be configured to automatically stop when clock
cycles are not needed. A time reference for the operating
system kernel may communicate via a Network Time Proto-
col (NTP), Simple Network Time Protocol (SNTP), or other
suitable time protocol from a remote time server coupled to
the network. The network may comprise the Internet and the
operating system utilizing sockets style API of sockets and
ports on IP addresses for implementing firewall policies. The
predetermined firewall policies may comprise predetermined
policies based on IP addresses and/or protocols, applications,
user identity, and network activity.

According to another embodiment, a method for providing
a firewall security device is provided. The method may com-
prise receiving a data packet within an OS, with the OS being
a state machine comprising a protocol stack for processing
the data packets according to a network protocol, and the
operating system being embedded within a processor and
processing a received data packet to determine whether the
data packet is authorized based on firewall policies, wherein
unauthorized data packets are blocked while authorized data
packets are transmitted.

The protocol stack may comprise a TCP/IP. The protocol
stack may comprise a UDP/IP stack. Data packets may be
transmitted via a network interface comprising at least one
NIC. Executable instructions for the OS may be stored in a
memory of the processor and executed through a sockets API.
The predetermined firewall policies may comprise policies
based on IP addresses and/or protocols, applications, user
identity, and network activity.

According to some embodiments, a computer-readable
storage medium may be provided. The computer-readable
storage medium may embed instructions. The instructions
executable by the processor may perform the method com-
prising receiving a data packet within an OS, with the OS
being a state machine that comprises a protocol stack for
processing the data packets according to a network protocol,
the operating system being embedded within a processor, and
processing the received data packet to determine whether the
data packet is authorized based on predetermined firewall
policies, wherein unauthorized data packets are blocked
while authorized data packets are transmitted.

A system for routing data packets across communication
networks is provided in some embodiments. The system may
include a plurality of communication ports, and a switch, the
switch being configured to transmit multiple data packets
between the plurality of communication ports. The system
may also include at least one firewall security device, the
firewall security device comprising a processor and an oper-
ating system (OS) embedded in the processor. The OS may
comprise an operating system kernel, the operating system
kernel being a state machine having a protocol stack for
communicating with one or more devices via a network inter-
face. The OS may be configured to receive and transmit data
packets and block unauthorized data packets based on prede-
termined firewall policies.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are illustrated by way of example and not
limitation in the figures of the accompanying drawings, in
which like references indicate similar elements.

20

25

30

35

40

45

50

55

60

65

4

FIG. 1 illustrates a diagram of a computing environment,
according to an exemplary embodiment.

FIG. 2 illustrates a block diagram of a TCP/IP stack-based
element, according to an exemplary embodiment.

FIGS. 3, 4, and 5 illustrate block diagrams of firewall
security devices, according to exemplary embodiments.

FIG. 6 illustrates a flow chart of a method for operating a
firewall security device, according to an exemplary embodi-
ment.

FIG. 7 illustrates a block diagram of a system employing at
least one firewall security device, according to an exemplary
embodiment.

FIG. 8 illustrates a block diagram of a system employing at
least one firewall security device, according to an exemplary
embodiment.

DETAILED DESCRIPTION

Various aspects of the subject matter disclosed herein are
now described with reference to the drawings, wherein like
reference numerals are used to refer to like elements through-
out. In the following description, for purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding of one or more aspects. It may be
evident, however, that such aspect(s) may be practiced with-
out these specific details. In other instances, well-known
structures and devices are shown in block diagram form in
order to facilitate describing one or more aspects.

Various embodiments disclosed herein provide firewall
security devices embedding an operating system based
entirely on a protocol stack. The protocol stack may be a
TCP/IP protocol stack, UDP/IP stack, combinations thereof,
or other protocols. The devices may include a processor,
which in turn includes an operating system embedded therein.
The operating system is fundamentally a state machine. The
kernel of the operating system is fundamentally a protocol
stack.

One of the advantages of such an operating system is that it
is inherently Internet-oriented. All Internet type functionality
is natural and inherent in the protocol stack-based processor
design and implementation. In addition to many advantages
provided by various embodiments are a small hardware
design, very compact and efficient software, minimal clock
cycles for execution, a natural Internet connectivity model,
and low power consumption.

FIG. 1 illustrates a diagram of an example computing envi-
ronment 100. The environment 100 comprises an edge device
110, a firewall security device 120, one or more client devices
130A-C, and a communication network 140. Even though
three client devices 130A-C are shown in FIG. 1, any number
of client devices may be used to practice the embodiments
disclosed herein. The network 140 includes a Local Area
Network (LAN), such as a proprietary network or intranet,
and a Wide Area Network (WAN), such as the Internet. The
network may be a wired network, a wireless network, or a
combination thereof. Network 140 allows communication
between various components of the environment 100. In other
words, the edge device 110 may communicate with one or
more client devices 130A-C over the network 140.

The edge device 110 and client devices 130A-C may
include a desktop computer, a laptop computer, a server, a
network host, a handheld computer, a mobile phone, a smart-
phone, a personal digital assistant (PDA), and other consumer
electronic devices such as smart light bulbs, smart water/
electricity meters, wireless detectors, and so forth.

As shown in FIG. 1, the firewall security device 120 (“fire-
wall” for short) may be coupled between the edge device 110

US 8,875,276 B2

5

to be protected and the network 140. According to various
embodiments, the firewall security device 120 may be imple-
mented as a single chip, microchip, integrated circuit, or the
like. As shown in FIG. 1, the firewall security device 120 may
be implemented within three different layers of the stack,
applications 122, an Operating System (OS) 124, and hard-
ware 126. The hardware layer may be more important in
stopping packets from reaching the other two layers, thus
representing the first line of defense in preventing of satura-
tion of the system with the unnecessary traffic.

The firewall security device 120 is configured to control
network traffic between the network 140 and the edge device
110, and to prevent unauthorized users from accessing the
edge device (i.e. prevent malicious attacks, hostile attacks,
computer virus attacks, and the like). The firewall security
device 120 compares traffic characteristics to existing poli-
cies and, based on comparison, allows or blocks specific data
packets for further transmission. Traffic characteristics may
include IP addresses, protocols, thread characteristics, user
identity, and the like. Firewall policies may be based on
different technologies such as packet filtering, stateful
inspection, stateful protocol analysis, application-proxy gate-
way managing, dedicated proxy server managing, network
control access, unified threat management, and virtual private
networking. Those who are skilled in the art would under-
stand that any firewall policies could be applied for protection
the edge device 110 from malicious attacks when it interacts
over the network 140. The firewall security device 120 is
described below in greater detail. According to an example
embodiment, the firewall security device 120 and the edge
device 110 may be incorporated, integrated or housed
together.

FIG. 2 is a block diagram of an example TCP/IP stack-
based element 200. For example, the element 200 may be a
processor or a chip into which a TCP/IP stack-based operat-
ing system is embedded. The element 200 comprises a
memory 210, which may store one or more modules.
Example modules, which may be stored in the memory 210,
include an Input/Output (I/O) request receiver module 220, a
protocol handling module 230, an 1/O request processing
module 240, and an optional network interface module 250. It
will be readily understood by those skilled in the art that the
technology described herein encompasses those embodi-
ments where one or more of the modules may be combined
with each other or not included at all in the memory 210.

The element 200 also comprises a state machine 260 for
executing various instructions and modules stored in the
memory 210. The state machine 260 may include one or more
state machines.

A module should be generally understood as one or more
routines that perform various system-level functions and may
be dynamically loaded and unloaded by hardware and device
drivers as needed. The modular software components
described herein may also be integrated as part of an appli-
cation specific component.

According to various embodiments disclosed herein, the
modules may each include executable instructions for the
operating system embedded into the element 200 and may be
executed through a sockets API.

The /O request receiver module 220 is configured to
receive /O requests. The protocol handling module 230 is
configured to handle a specific protocol (e.g., TCP/IP, UDP/
1P, or the like) for the protocol stack state machine implemen-
tation. The I/O request processing module 240 is configured
to process the 1/O requests from an application according to
the network protocol using the operating system. The
optional network interface module 250 may be included and

20

25

30

35

40

45

50

55

60

65

6

is configured to provide an interface between the protocol
stack state machine and a network interface controller, which
is described further in more details.

The element 200 may also comprise a clock, or, alterna-
tively, clocking may be provided externally. For example, the
state machine 260 may utilize a time reference using the NTP
or SNTP from a remote time server.

FIG. 3 is a block diagram of firewall security device 120 of
FIG. 1, according to an exemplary embodiment. The firewall
security device 120 comprises a processor 310, and two NICs
320 coupled to the processor 310.

The processor 310 may comprise a Computer Processing
Unit (CPU), a controller, a micro-controller, a microproces-
sor, an electronic device, other electronic units designed to
perform the functions described herein, or a combination
thereof. The processor 310 may be implemented as a multi-
core processor, or, alternatively, the firewall security device
120 may include several processors 310. The processor 310 is
configured to execute processor executable instructions.

According to various embodiments disclosed herein, the
processor 310 embeds an operating system based on a proto-
col stack. The protocol stack may be a TCP/IP protocol stack,
UDP/IP stack, combinations thereof, or other appropriate
protocols. One particular example of the processor 310
embedding a TCP/IP stack-based operating system is
described with reference to FIG. 2.

Although it is not shown in FIG. 3, the processor 310 may
include a memory storing an operating system and/or any
further executable instructions and/or data (e.g., firewall poli-
cies). The memory can be implemented within the processor
310 or externally to the processor 310. As used herein, the
term “memory” refers to any type of long term, short term,
volatile, nonvolatile, or other storage devices and is not to be
limited to any particular type of memory or number of memo-
ries, or type of media upon which memory is stored. In some
embodiments, the memory may comprise one or more of a
read only memory (ROM) and a random access memory
(RAM).

The firewall security device 120 further comprises two
NICs 320 coupled to the processor 310. The NICs 320 are
configured to couple the processor 310 and a network such as
a LAN and/or a WAN. Examples of NIC 320 include an
Ethernet controller and/or a wireless interface controller (e.g.,
802.11 controller, ZigBee controller, Bluetooth controller,
etc.). It will be apparent to those skilled in the art that the NIC
320 can support many wired and wireless standards, and
provides communication over a Universal Serial Bus (USB)
connection, a firewire connection, an Ethernet connection, a
serial connection, a parallel connection, an Analog Telephone
Adapter (ATA) connection, a wireless USB connection, an
IEEE 802.11 connection, and so forth.

The NICs 320 may provide a network interface, for
example, to the Internet. In some embodiments, the NIC 320
may be a software-based controller. In an example, the first
NIC 320 is used for connecting to a LAN or an edge device,
while the second NIC 320 is used for connecting to a WAN.
Although FIG. 3 shows two NICs 320, those skilled in the art
may understand that the firewall security device 120 may
comprise any number of NICs 320, or may not include them
at all.

FIG. 4 is a block diagram of firewall security device 120 of
FIG. 1, according to an exemplary embodiment. The firewall
security device 120 comprises a processor 310, two NICs 320
coupled to the processor 310, and a UART 410 coupled to the
processor 310

The processor 310 may embed an operating system based
on a protocol stack. The protocol stack may be a TCP/IP

US 8,875,276 B2

7

protocol stack, UDP/IP stack, combinations thereof, or other
appropriate protocols. Thus, the operating system is a TCP/IP
stack state machine, UDP/IP stack state machine, or alike.

The UART 410 relates to hardware configured to provide
communication between the processor 310 and a peripheral
device via a serial port. The UART 410 may be used to
out-of-band control and setup the processor 310. For
example, the firewall policies and corresponding routine
(software) may be uploaded, updated, changed, accessed, and
so forth, via the UART 410.

Alternatively, the UART 410 may be used to communicate
with an edge device to be protected (e.g., the edge device 110
of FIG. 1), while one of the NICs 320 may be used to out-of-
band control and setup software of the processor 310. One of
ordinary skill in the art would readily understand that any
other arrangement is possible for controlling and managing
the routine stored in the firewall security device 120.

FIG. 5 is a block diagram of firewall security device 120 of
FIG. 1, according to still another example embodiment. The
firewall security device 120 comprises a processor 310, two
NICs 320, and an UART 410, which are all coupled between
each other via a bus. The firewall security device 120 further
comprises a memory coupled to the bus. The memory is any
memory configured to store and retrieve data. In the shown
example, the memory includes a ROM 510 and a RAM 520.
However, it should be understood that the security device 120
may comprise the ROM 510 only, for example.

The term “memory” as used herein relates to a computer-
readable storage medium used to participate in providing
executable instructions to the processor 310 for further execu-
tion. According to various embodiments, the memory stores
instructions (code) and data for the operating system and
instructions and data for implementing firewall security fea-
tures.

According to various embodiments, executable instruc-
tions and data for the operating system are stored separately.
Thus, the read-only executable instructions may be executed
directly from ROM, and only the read/write data needs to be
saved in some type of RAM. As a result, there are both
substantial power and cost savings. Moreover, the assembled
and linked code of the operating system may be highly opti-
mized for low power consumption, as well as reduced ROM
and RAM size.

FIG. 6 is a flow chart illustrating an exemplary method 600
for a firewall security device having a TCP/IP stack-based
operating system. According to the example, the operating
system utilizes sockets style API of sockets and ports on IP
addresses for handling 1/O requests.

Instep 610, a data packet is received by the firewall security
device. According to the embodiments disclosed herein, the
data packet is an 1P packet comprising source and destination
addresses, a header, flags, checksums, data payload, and so
forth. The data packet may be transmitted from a WAN to a
LAN or to an edged device, or vice versa.

In step 620, the received data packet may optionally be
processed by the firewall security device. Processing may
comprise any firewall techniques such as packet filtering,
stateful inspection, stateful protocol analysis, application-
proxy gateway managing, dedicated proxy server managing,
network control access, unified threat management, virtual
private networking, and so forth. Generally, at this step, pre-
determined firewall policies are applied to the received data
packet to determine whether it is authorized or not. Firewall
policies may include policies based on IP addresses and/or
protocols, policies based on applications, policies based user

20

25

30

35

40

45

50

55

60

65

8

identity, policies based on network activity, and so forth.
Firewall policies may be applied for incoming and/or outgo-
ing traffic.

In step 630, it is determined whether the data packet is
authorized or not, e.g., based on predetermined firewall poli-
cies. For example, it is checked whether source and/or desti-
nation addresses are valid, whether these addresses have a
private destination or are encrypted or improperly flagged.
According to another example, it can be checked what pro-
tocol is used in the data packet (e.g., packets having IPv6
format shall be blocked if the edge device handles IPv4 only).
In yet another example, it can enforce user identity policy by
using digital certificates, cryptographic tokens, authentica-
tion user IDs, and the like. According to still another example,
time-based policies can be applied to reveal inactive periods.
One of ordinary skill in the art would understand that any
other policies can be applied to determine authorization of
data packets.

If it is determined in step 630 that the data packet is autho-
rized, the method 600 proceeds to step 640, where the data
packet is further transmitted by the firewall security device
(e.g., to an edge device). If, on the other hand, it is determined
that the data packet is not authorized, the method 600 pro-
ceeds to step 650 to block the data packet.

FIG. 7 is a block diagram of a system 700 employing a
firewall security device 120, according to an exemplary
embodiment. The system 700 may be used to implement a
router for forwarding data packets across communication
networks. In the example shown, the system 700 is used for
forwarding data packets between a WAN 710 (such as the
Internet) and a LAN 720, which may comprise one or more
computing devices (e.g., edge devices).

The system 700 comprises a number of ports 730A-E to
provide connection of the system 700 with said networks
and/or computing devices. In the FIG. 7, four ports 730A-E
are shown; however, there could be any number of them as
can be understood by one of ordinary skill in the art. The
system 700 may optionally comprise a Wireless Transmit-
ting/Receiving Unit (WTRU) 740, which may provide wire-
less connection with one or more computing/edge devices of
the LAN 720.

The system 700 further comprises a switch 750 configured
to route data packets between ports 730A-E and the WTRU
740 (if any). The switch 750 may comprise a processor, a
microprocessor, a controller, a chip, or any other circuitry for
data routing.

In addition, the system 700 may include a firewall security
device 120, according to any embodiment disclosed herein
with reference to FIGS. 3-5. The firewall security device 120
may be coupled between the port 730A and the switch 750 in
such a way that all data packets transmitted from the WAN
710 are first processed by the firewall security device 120 to
prevent malicious attacks and unauthorized access to the
computing devices of LAN 720. If the data packets are autho-
rized by the firewall security device 120, they are transmitted
to the switch 750 for further routing.

FIG. 8 is a block diagram of a system 800 employing a
firewall security device 120, according to an exemplary
embodiment. The system 800 may be used to implement a
router for forwarding data packets across communication
networks. The system 800 comprises four ports 730A-D to
provide connection with a WAN 710 and a LAN 720, a
WTRU 740, a switch 750 and five firewall security devices
120. The firewall security devices 120 are respectively
coupled between each port 730A-D and a bus line, and
between the WIRU 740 and the bus line. The switch 750 is

US 8,875,276 B2

9

also coupled to the bus line such that all said components are
interconnected, and multiple data packets can be forwarded
between ports.

The arrangement of the system 800 shown in FIG. 8 allows
for applying firewall policies for data packets at each port
730A-D and the WTRU 740 prior to reaching the switch 750,
thereby preventing the edge device(s) from malicious attacks.

Some of the above-described functions can be composed of
instructions that are stored on storage media (e.g., computer-
readable medium). The instructions may be retrieved and
executed by the processor 310. Common forms of computer-
readable media include, for example, a floppy disk, a flexible
disk, a hard disk, magnetic tape, any other magnetic medium,
a CD-ROM disk, digital video disk (DVD), any other optical
medium, any other physical medium with patterns of marks
or holes, a RAM, a PROM, an EPROM, an EEPROM, a
FLASHEPROM, any other memory chip or cartridge, or any
other medium from which a computer can read.

The following gives an overview of the advantages of
protocol stack-based processors, which can be used in fire-
wall security devices according to various embodiments, dis-
closed herein.

Conventional operating systems manage internal tasks and
external programs in a dictatorial manner, by preemptively
multitasking through threads and processes. Such a system is
flexible and of general purpose in nature. However, it may not
be optimal since applications and unknown driver compo-
nents have little or no control over their scheduling.

In contrast to conventional operating systems, the operat-
ing system according to the various embodiments disclosed
herein regards the whole environment as being inherently
cooperative and friendly. To that end, the whole system is
essentially a state machine. There is no executive, but a coop-
erative state machine model. All systems and application
components are built together in an open and symbiotic rela-
tionship. Only components actually required in a target sys-
tem are built into the environment.

In a conventional operating system, the kernel and other
systems components would comprise all the normal functions
of file and memory management, timers, input and output,
TCP/IP, and the like. There are numerous threads and pro-
cesses going on, such as kernel executive cycles around all the
running processes, updating clocks, checking communica-
tion ports, updating displays, checking on Ethernet traffic,
and so forth. In this way, the conventional operating system
provides a highly sophisticated and flexible system, but with
the downside of a tremendous number of activities (and hence
clock cycles and, therefore, energy) going on all the time.

In contrast, an implementation according to various
embodiments disclosed herein may include only the required
components. As a result, execution times and minimal code
size would be optimized, resulting in fewer energy cycles.
Such a simple firewall device has just the state machine han-
dling the lower operations of forwarding Ethernet data pack-
ets up through the TCP/IP stack. When no tasks need to be
done, the state machine is idle. Therefore, the protocol stack-
based processor according to various embodiments disclosed
herein may eliminate wasted internal clock cycles through the
use of intelligent tasking, in contrast to multi-tasking.

Various application areas for the system include clean tech
(green energy), medical, military, aerospace, automotive,
Smartphone, PDA, Pocket Computer, and so forth. In the
clean tech area, for example, one application for the firewall
security device may be “a tiny firewall security chip for a
smart light bulb,” where the network traffic may be transmit-
ted over the powerline. Another application example may
relate to smart meters (water meters, electricity meters). Said

20

25

30

35

40

45

50

55

60

65

10

devices may possess an integrated processor and a transmitter
for delivering measured data or other relevant information.
Application of a firewall security device in these devices may
help to prevent any malicious attacks.

Similarly, firewall security devices may be integrated in
medical electronic devices, such as a stent. A stent is a syn-
thetic tube inserted into a natural passage/conduit in the body
to prevent, or counteract, a disease-induced, localized flow
constriction. A tiny chip implementing data transmission and
a tiny firewall security device could be built into each stent
along with a tiny ultra long life and low power RF transmitter/
receiver. The modified stent could send data about the state of
the artery in real-time over the wireless network, such that the
patient’s condition can be properly monitored.

The present system could also be used for other medical
patient monitoring applications where the small size, low
power and Internet monitoring aspects would provide enor-
mous benefits (e.g., used in a “digital plaster” stuck to a
patient’s body to track vital signs, such as heart rate and
breathing, and then send alerts to doctors over the Internet).

The ultra low power aspect of the firewall security device
according to the various embodiments disclosed herein may
provide greatly improved battery life for various devices.
Boot up time for devices may be greatly reduced by executing
instructions from the ROM, saving general state information
in battery-backed SRAM, and saving crucial microprocessor
register setting and other state information saved in special
registers in custom application-specific integrated circuits
(ASICs), for example.

A full IP stack typically includes an application layer,
transport layer, internet layer, and link layer. The basic oper-
ating system for the firewall security device may not normally
have all the components of a full Internet Protocol stack. A
basic kernel may have, for example, just HTTP on top of TCP
on top of IP on top of Ethernet. Alternatively, the kernel may
be built with SNMP on UDP on IP on Ethernet.

The above description is illustrative and not restrictive.
Many variations of the embodiments will become apparent to
those of skill in the art upon review of this disclosure. The
scope of the subject matter should, therefore, be determined
not with reference to the above description, but instead should
be determined with reference to the appended claims along
with their full scope of equivalents.

While the present embodiments have been described in
connection with a series of embodiments, these descriptions
are not intended to limit the scope of the subject matter to the
particular forms set forth herein. It will be further understood
that the methods are not necessarily limited to the discrete
steps or the order of the steps described. To the contrary, the
present descriptions are intended to cover such alternatives,
modifications, and equivalents as may be included within the
spirit and scope of the subject matter as disclosed herein and
defined by the appended claims and otherwise appreciated by
one of ordinary skill in the art.

What is claimed is:

1. A firewall security device, comprising:

a processor; and

an operating system (OS) embedded in the processor, the

OS comprising a protocol stack for communicating with
one or more devices via a network interface, wherein the
OS blocks unauthorized data packets within one or more
layers of the protocol stack based on predetermined
firewall policies, the protocol stack comprising an Eth-
ernet layer, an Internet Protocol (IP) layer on top of the
Ethernet layer, a TCP layer on top of the IP layer, and an
HTTP layer on top of the TCP layer; and wherein the OS
utilizes sockets style Application Programming Inter-

US 8,875,276 B2

11

face (API) of sockets and ports on IP addresses for
implementing the predetermined firewall policies,
wherein all operations for the OS are executed using the
sockets style APL

2. The device of claim 1, wherein the network interface
comprises at least one Network Interface Controller (NIC)
coupled to the processor.

3. The device of claim 1, further comprising a Universal
Asynchronous Receiver/Transmitter (UART) coupled to the
processor.

4. The device of claim 1, further comprising a memory
coupled to the processor, the memory comprising read only
memory (ROM) and random access memory (RAM).

5. The device of claim 4, wherein the ROM stores instruc-
tions executable by the processor, the instructions comprising
predetermined firewall policies for transmitting or blocking
data packets.

6. The device of claim 1, wherein the protocol stack com-
prises a Transmission Control Protocol/Internet Protocol
(TCP/1P) stack.

7. The device of claim 1, wherein the protocol stack com-
prises a User Datagram Protocol/Internet Protocol (UDP/IP)
stack.

8. The device of claim 1, further comprising an asynchro-
nous clock to serve as an internal clock for an OS kernel, the
asynchronous clock being configured to automatically stop
when clock cycles are not needed.

9. The device of claim 8, wherein a time reference for the
OS kernel is received via a Network Time Protocol (NTP) or
Simple Network Time Protocol (SNTP) from a remote time
server coupled to a network.

10. The device of claim 1, wherein the predetermined fire-
wall policies comprise one or more of policies based on an IP
address, a protocol, an application, a user identity, and a
network activity.

11. A method, comprising:

receiving a data packet, within a protocol stack-based oper-

ating system (OS) embedded and executing within a
processor, the OS comprising a kernel that consists of a
state machine, the kernel consisting of a protocol stack
that processes the data packet according to a network
protocol;

processing the received data packet within one or more

layers of the protocol stack to determine whether the
data packet is authorized based on predetermined fire-
wall policies, wherein unauthorized data packets are
blocked while authorized data packets are transmitted;
and

wherein the OS utilizes sockets style Application Program-

ming Interface (API) of sockets and ports on IP
addresses for implementing the predetermined firewall
policies, wherein all operations for the OS are executed
using the sockets style API.

12. The method of claim 11, wherein the protocol stack
comprises a Transmission Control Protocol/Internet Protocol
(TCP/IP) or a User Datagram Protocol/Internet Protocol
(UDP/IP) stack.

13. The method of claim 11, wherein data packets are
transmitted via a network interface, the network interface
comprising at least one Network Interface Controller (NIC).

20

25

30

35

40

45

50

55

12

14. The method of claim 11, wherein executable instruc-
tions for the OS are stored in a read only memory (ROM) of
the processor and executed through the sockets style API.

15. The method of claim 11, wherein the predetermined
firewall policies comprise one or more of the policies based
on an IP address, a protocol, an application, a user identity, a
network activity.

16. A system for routing data packets across communica-
tion networks, comprising:

a plurality of communication ports;

a switch, the switch being configured to transmit multiple
data packets between the plurality of communication
ports; and

at least one firewall security device, the firewall security
device comprising a processor and an operating system
(OS) embedded in the processor, the OS being a state
machine having a protocol stack for communicating
with one or more devices via a network interface,
wherein the OS blocks unauthorized data packets within
one or more layers of the protocol stack based on pre-
determined firewall policies, wherein the OS utilizes
sockets style Application Programming Interface (API)
of sockets and ports on IP addresses for implementing
the predetermined firewall policies, wherein all opera-
tions for the OS are executed using the sockets style API.

17.The system of claim 16, wherein the at least one firewall
security device is coupled to at least one communication port
and a switch.

18. The system of claim 17, wherein the at least one firewall
security device comprises a plurality of firewall security
devices, each of the plurality of communication ports being
provided with a respective one of the plurality of firewall
security devices.

19. The system of claim 17, wherein the protocol stack
comprises a Transmission Control Protocol/Internet Protocol
(TCP/IP) stack or a User Datagram Protocol/Internet Proto-
col (UDP/IP) stack.

20. An operating system embedded within a processor, the
operating system consisting of:

a state machine that comprises a protocol stack for com-
municating with one or more devices via a network
interface, blocking unauthorized data packets within
one or more layers of the protocol stack based on pre-
determined firewall policies, and allowing authorized
data packets, the protocol stack consisting of an Ethernet
layer, an Internet Protocol (IP) layer on top of the Eth-
ernet layer, a TCP layer on top of the IP layer, and an
HTTP layer on top of the TCP layer; and wherein the
operating system utilizes sockets style Application Pro-
gramming Interface (API) of sockets and ports on IP
addresses for implementing the predetermined firewall
policies, wherein all operations for the operating system
are executed using the sockets style APIL.

21. The operating system according to claim 20, wherein
the protocol stack consists of a UDP layer on top of the IP
layer and a SNMP layer on top of the UDP layer, wherein the
SNMP layer and the UDP layer are utilized in place of the
HTTP layer and the TCP layer.

#* #* #* #* #*

