
(12) United States Patent
Cullimore

USOO86O7086B2

US 8,607.086 B2
*Dec. 10, 2013

(10) Patent No.:
(45) Date of Patent:

(54) MASSIVELY MULTICORE PROCESSOR AND
OPERATING SYSTEM TO MANAGE
STRANDS IN HARDWARE

(75) Inventor: Ian Henry Stuart Cullimore,
Leominster (GB)

(73) Assignee: IOTA Computing, Inc., Palo Alto, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is Subject to a terminal dis
claimer.

(21) Appl. No.: 13/333,802

(22) Filed: Dec. 21, 2011

(65) Prior Publication Data

US 2013/OO61078 A1 Mar. 7, 2013

Related U.S. Application Data
(63) Continuation of application No. 13/224.938, filed on

Sep. 2, 2011.

(51) Int. Cl.
G06F I/00 (2006.01)
G06F L/26 (2006.01)
G06F L/32 (2006.01)
G06F 15/16 (2006.01)
G06F 9/46 (2006.01)

(52) U.S. Cl.
USPC 713/323; 713/300; 713/320, 709/201;

718/105

(58) Field of Classification Search
None
See application file for complete search history.

receive iO requests
81

- - - - - - - - - - - - -
Determine the network protocol

620

(56) References Cited

U.S. PATENT DOCUMENTS

5,469,553 A 11, 1995 Patrick
5,493,689 A 2/1996 Waclawsky et al.
5,710,910 A 1/1998 Kehl et al.
5,896.499 A 4/1999 McKelvey
5,968,133 A 10, 1999 Latham et al.
6,714,536 B1 3/2004 Dowling
7,002,979 B1 2/2006 Schneider et al.
7,036,064 B1 4/2006 Kebichi et al.

(Continued)

FOREIGN PATENT DOCUMENTS

CN 1622517 6, 2005
TW 200924424 6, 2009
WO WO2O11056808 5, 2011

OTHER PUBLICATIONS

Ashkenazi et al. “Platform Independent Overall Security Architec
ture in Multi-Processor System-On-Chip ICs for Use in Mobile
Phones and Handheld Devices.” World Automation Congress, Jul.
24-26, 2006. Accessed Feb. 18, 2011-Engineering Village.

(Continued)
Primary Examiner — Ji H Bae
(74) Attorney, Agent, or Firm — Carr & Ferrell LLP
(57) ABSTRACT
A computing apparatus and corresponding method for oper
ating are disclosed. The computing apparatus may comprise a
set of interconnected central processing units (CPUs). Each
CPU may embed an operating system including a kernel
comprising a protocol stack. At least one of the CPUs may
further embed executable instructions for allocating multiple
strands among the rest of the CPUs. The protocol stack may
comprise a Transmission Control Protocol/Internet Protocol
(TCP/IP), a User Datagram Protocol/Internet Protocol (UDP/
IP) stack, an Internet Control Message Protocol (ICMP) stack
or any other suitable Internet protocol. The method for oper
ating the computing apparatus may comprise receiving input/
output (I/O) requests, generating multiple strands according
to the I/O requests, and allocating the multiple strands to one
or more CPUS.

24 Claims, 6 Drawing Sheets

800P

US 8,607.086 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

7,055,173 B1 5/2006 Chaganty et al.
7,246,272 B2 7/2007 Cabezas et al.
7,308.686 B1 12/2007 Fotland et al.
7,334,124 B2 2/2008 Pham et al.
7,509,673 B2 3/2009 Swander et al.
7,657,933 B2 2/2010 Hussain et al.
7,694,158 B2 * 4/2010 Melpignano et al. T13,300
7,734,933 B1 6, 2010 Marek et al.
7,770,179 B1 8/2010 James-Roxby et al.
7,886,340 B2 2/2011 Carley
8,055,822 B2 * 1 1/2011 Bernstein et al. T10/65
8,132,001 B1 3/2012 Patten et al.

2002/0007420 A1* 1/2002 Eydelman et al. 709,235
2002/0167965 A1 * 1 1/2002 Beasley et al. 370/465
2003, OO84190 A1
2004.0049624 A1
2004/0093.520 A1
2004.0143751 A1
2004/0210320 A1
2006, 0026162 A1
2006, O133370 A1
2007/OOO8976 A1
2007/0022421 A1
2007/01 18596 A1*
2007/0211633 A1*
2007/0255861 A1
2008, 0046891 A1
2008.0109665 A1
2009, O126003 A1
2009. O158299 A1*
2009/0235263 A1*

5, 2003 Kimball
3/2004 Salmonsen
5, 2004 Lee et al.
7, 2004 Peikari
10/2004 Pandya
2, 2006 Salmonsen et al.
6, 2006 Eldar
1/2007 Meenan
1/2007 Lescouet et al.
5/2007 Patiejunas TO9,203
9/2007 Gunawardena et al. 370,232
11/2007 Kain et al.
2/2008 Sanchorawala et al.
5/2008 Kuhlmann et al.
5, 2009 Touboul
6/2009 Carter T19,319
9, 2009 Furukawa ... 718, 102

2010.0005323 A1 1/2010 Kuroda et al. 713,300
2010/01 15116 A1* 5/2010 ASnaashari 709/230
2010, 0131729 A1 5, 2010 Fulcheri et al.
2010.0185719 A1* 7, 2010 Howard TO9,201
2010, 01922.25 A1 7, 2010 Ma et al.
2011/0002184 A1 1/2011 Kim
2011 OO88037 A1
2011/O107357 A1
2012fOO17262 A1
2012/0042088 A1

OTHER PUBLICATIONS

4/2011 Glistvain
5, 2011 Cullimore
1/2012 Kapoor et al.
2/2012 Cullimore

Bathen et al. “Inter and Intra Kernel Reuse Analysis Driven Pipelin
ing on Chip-Multiprocessors.” Intemational Symposium on VLSI
Design, Automation and Test, Apr. 26-29, 2010. p. 203-207.
Accessed Feb. 16, 2011—IEEExplore http://ieeexplore.ieee.org/
Xpis/abs all.jsp?amumber=5496725.
Bolchini et al. “Smart Card Embedded Information Systems: A
Methodology for Privacy Oriented Architectural Design.” Data &
Knowledge Engineering, 2002. vol. 41, No. 2-3, p. 159-182.
Accessed Feb. 16, 2011-ScienceDirect.com.
Ferrante et al. "Application-Driven Optimization of VLIW Architec
tures: A Hardware—Software Approach.” 11th IEEE RealTime and
Embedded Technology and Applications Symposium, Mar. 7-10,
2005. pp. 128-137. Accessed Feb. 15, 2011-IEEExplore http://
ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1388380.
Green Hills Software, “1-I-veloSityTM Real-Time Microkemel.”
Accessed on Feb. 16, 2011 at http://www.ghs.com/products/micro
velosity.html.
Green Hills Software, Inc., "u-velOSity Microkernel.” (datasheet)
2006.
Hattori. “Challenges for Low-Power Embedded SOC’s.” Interna
tional Symposium on VLSI Design, Automation and Test, Apr. 25-27.
2007. p. 1. Accessed Feb. 16, 2011—IEEExplore http://ieeexplore.
ieee.org/xpis/abs all.jsp?arnumber-423.9406.
Joumal of Techonology & Science, “Express Logic, Inc.; Express
Logic and IAR Systems TeamUp to Provide ThreadXRTOS Support
in IAR Embedded Workbench IDE for Freescale ColdFire.
Accessed on Feb. 16, 2011 at http://procquest.umi.com.mutex.gmu.
edu/pqdweb?index=7&dlid=1541305

Keet al. “Design of PC/104 Processor Module Based on ARM.”
International Conference on Electrical and Control Engineering, Jun.
25-27, 2010. p. 775-777. Accessed Feb. 17, 2011 IEEExplore
http://ieeexplore.ieee.org/xpis/abs all.jsp?arnumber=5630566.
Kinebuchietal. "A Hardware Abstraction Layer for Integrating Real
Time and General-Purpose with Minimal Kernel Modification.” Soft
ware Technologies for Future Dependable Distributed Systems, Mar.
17, 2009. p. 112-116. Accessed Feb. 16, 2011-IEEExplore http://
ieeexplore.ieee.org/xpls/abs all.jsp?arnumber 4804582.
Tabari, et al. “Neural Network Processor for a FPGA-based
Multiband Fluorometer Device.” Intemational Workshop on Com
puter Architecture for Machine Perception and Sensing, Aug. 18-20,
2006. p. 198-202. Accessed Feb. 16, 2011–IEEExplore http://
ieeexplore.ieee.org/xpls/abs all.jsp?amumber=435.0381.
Wang et al. “Towards High-Performance Network Intrusion Preven
tion System on Multi-core Network Services Processor.” 15th
Intemational Conference on Parallel and Distributed Systems, Dec.
8-11, 2009. p. 220-227. Accessed Feb. 16, 2011 IEEExplore.
Nguyen et al. “Real-Time Operating Systems for Small
Microcontrollers.” IEEE Micro, Sep.-Oct. 2009. vol. 29, No. 5, p.
30-45. Accessed Feb. 15, 2011—IEEExplore http://ieeexplore.
ieee.org/xpis/abs all.jsp?arnumber=5325154.
Ashkenazi et al. “Platform Independent Overall Security Architec
ture in Multi-Processor System-on-Chip ICs for Use in Mobile
Phones and Handheld Devices.” World Automation Congress, Jul.
24-26, 2006. Accessed Feb. 18, 2011—Engineering Village).
Bathen et al. “Inter and Intra Kernel Reuse Analysis Driven Pipelin
ing on Chip—Multiprocessors.” International Symposium on VLSI
Design, Automation and Test, Apr. 26-29, 2010. p. 203-206.
Accessed Feb. 16, 2011—IEEExplore http://ieeexplore.ieee.org/
Xpis/abs all.jsp?amumber=5496725.
Bolchini et al. “Smart Card Embedded Information Systems: A
Methodology for Privacy Oriented Architectural Design.” Data &
Knowledge Engineering, 2002. Vol. 41, p. 159-182. Accessed Feb.
16, 2011—ScienceDirect.com.
Cavium Networks, “Nitrox(R) DPI L7 Content Processor Family.”
Accessed on Feb. 16, 2011 at http://www.caviumnetworks.com/pro
cessor NITROX-DPI.html.
Cavium Networks, "NitroXCR) Lite. Accessed on Feb. 16, 2011 at
http://www.caviumnetworks.com/processor Securit nitroxLite.
htm.
Ferrante et al. "Application-Driven Optimization of VLIW Architec
tures: A Hardware-Software Approach.” Proceedings of the 11th
IEEE RealTime and Embedded Technology and Applications Sym
posium, Mar. 7-10, 2005. p. 128-137. Accessed Feb. 15, 2011—
IEEExplore http://ieeexplore.ieee.org/xpls/abs all.
jsp?arnumber=1388380.
Freescale Semiconductor, “IP Multimedia Subsystems.” 2006. (bro
chure) Accessed Feb. 16, 2011 http://cachelreescale.com/files/
32bil Jcloc/brochure/BRIMSSOLUTIONS.pdf.
Green Hills Software, "u-velOSity Real-Time Microkernel.”
Accessed on Feb. 16, 2011 at http://www.ghs.com/products/micro
velosity.html.
Green Hills Software, Inc., "u-velOSity Microkernel.” (datasheet—
2pgs.) 2006.
Hattori. “Challenges for Low-Power Embedded SOC’s.” Interna
tional Symposium on VLSI Design, Automation and Test, Apr. 25-27.
2007. 4pgs. Accessed Feb. 16, 2011—IEEExplore http://
ieeexplore.ieee.org/xpis/abs all.jsp?arnumber-423.9406.
Journal of Technology & Science, “Express Logic, Inc.; Express
Logic and IAR Systems TeamUp to Provide ThreadXRTOS Support
in IAR Embedded Workbench IDE for Freescale ColdFire,
Accessed on Feb. 16, 2011 at http://produest.umi.com.mutex.gmu.
edu/pqdweb?index=7&dlid=1541305
Kakarountas et al. “Implementation of HSSec: A High-Speed Cryp
tographic Co-Processor.” IEEE Conference On Emerging Technolo
gies and Factory Automation, Sep. 25-28, 2007. p. 625-631.
Accessed Feb. 16, 2011—IEEExplore http://ieeexplore.ieee.org/
xpls/abs all.jsp?amumber 44 16827.
Keet al. “Design of PC/104 Processor Module Based on ARM.”
International Conference on Electrical and Control Engineering, Jun.
25-27, 2010. p. 775-777. Accessed Feb. 17, 2011 IEEExplore
http://ieeexplore.ieee.org/xpis/abs all.jsp?arnumber=5630566.

US 8,607.086 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

Kinebuchietal. "A Hardware Abstraction Layer for Integrating Real
Time and General-Purpose with Minimal Kernel Modification.” Soft
ware Technologies for Future Dependable Distributed Systems, Mar.
17, 2009. p. 112-116. Accessed Feb. 16, 2011–IEEExplore http://
ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4804582.
Tabari, et al. “Neural Network Processor for a FPGA-based
Multiband Fluorometer Device.” International Workshop on Com
puter Architecture for Machine Perception and Sensing, Sep. 2006.p.
198-202. Accessed Feb. 16, 2011—IEEExplore http://ieeexplore.
ieee.org/xpls/abs all.jsp?amumber 4350381.
Wang et al. “Towards High-Performance Network Intrusion Preven
tion System on Multi-core Network Services Processor.” 15th Inter
national Conference on Parallel and Distributed Systems, Dec. 8-11,
2009. p. 220-227. Accessed Feb. 16, 2011 IEEExplore.
Wong, William, “16-Bit MCU Invades 8-Bit Territory with 4-by
4-mm Chip.” Electronic Design, Sep. 29, 2005. vol.53, No. 21, p. 32.
Accessed Feb. 16, 2011—Academic Search Complete.
“Yoggie Pico Personal Security Appliance, www.yoggie.com.
(archived on May 31, 2009) Accessed Feb. 16, 2011—Archive.org).

“Yoggie Security Unveils Miniature Hardware Appliance,” www.
yoggie.com. (archived on May 31, 2009) Accessed Feb. 16, 2011—
Archive.org.
“Yoggie Unveils Miniature Internet Security Devices for Mac Com
puters.” M2 Telecomworldwire,Oct. 14, 2008. Accessed Feb. 18,
2011—Academic Source Complete).
Quan Huanget al.: "Embedded firewallbased on network processor'.
2005, IEEE, Proceedings of the Second International Conference on
Embedded Software and Systems (ICESS’05), 7 pages.
Tan et al.: “A simulation framework for energy-consumption analysis
of OS-driven embedded applications.” IEEE, vol. 22, No. 9, Sep.
2003.
International Search Report and Written Opinion mailed Dec. 30.
2010 in Patent Cooperation Treaty application No. PCT/US 10/
55186, filed Nov. 2, 2010.
Benini et al.: "Finite-state machine partitioning for low power.” 1998,
IEEE
Antoniou, S. “Networking Basics: TCP, UDP, TCP/IP and OSI
Model.” Oct. 29, 2007, <www.translingal.com/blog/networking-ba
sics-tcoudp-tcpip-osi-models.> (retrieved Jun. 4, 2013) 8 pages.

* cited by examiner

U.S. Patent Dec. 10, 2013 Sheet 1 of 6 US 8,607,086 B2

12

I/O
Request Request
Receiver Processing
Module Mille Module
120 140

Processing Unit
160

PrOtOCO NetWOrk
Handling Interface

Module

FIG. 1

U.S. Patent Dec. 10, 2013 Sheet 2 of 6 US 8,607,086 B2

2.

210 APPLICATIONS

280 SOCKETS AP

TCP UDP ICMP
EXTENSIONS EXTENSIONS EXTENSIONS

230 234 238

TCP STACK UDP STACK ICMP STACK
232 236 240

250 PLAYER

Ethernet
Controller

270

220 HARDWARE

Device Driver Device Driver Device Driver
260 262 264

FIG. 2

U.S. Patent Dec. 10, 2013 Sheet 3 of 6 US 8,607,086 B2

so

Receive an I/O request
310

Determine the network protocol
320

Process the I/O request according to the network
protocol
330

FIG. 3

U.S. Patent Dec. 10, 2013 Sheet 4 of 6 US 8,607,086 B2

Master Control
Program |

FIG. 4

U.S. Patent Dec. 10, 2013 Sheet 5 of 6 US 8,607,086 B2

o

Computing Device

10

O
C
C
.9
-

5
.9

S
E
O
O

FIG. 5

US 8,607,086 B2
1.

MASSIVELY MULTICORE PROCESSOR AND
OPERATING SYSTEM TO MANAGE

STRANDS IN HARDWARE

CROSS REFERENCES TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica
tion Ser. No. 13/224,938, filedon Sep. 2, 2011, entitled “Mas
sively Multicore Processor and Operating System to Manage
Strands in Hardware.” which is incorporated by reference in
its entirety. This application is also related to U.S. patent
application Ser. No. 13/277,111, filed on Oct. 19, 2011,
entitled, “TCP/IP Stack-Based Operating System,” which is a
continuation of U.S. patent application Ser. No. 12/938,290,
filed on Nov. 2, 2010, entitled, “TCP/IP Stack-Based Oper
ating System, both of which are incorporated by reference in
their entirety.

TECHNICAL FIELD

The application generally relates to computing devices
having multiple processors and, more specifically, to a mul
ticore processor and operating system based on a protocol
stack.

BACKGROUND

Computing devices Such as desktop computers, laptop
computers, cell phones, Smartphones, personal digital assis
tants (PDA), and many other electronic devices are widely
deployed. The primary element of such computing devices is
a central processing unit (CPU), or a processor, which is
responsible for executing instructions of one or more com
puter programs. The CPU executes each program instruction
in sequence to perform the basic arithmetical, logical, and
input/output operations of the computing device. Design and
implementation of Such devices in general, and CPUs in
particular, may vary; however, their fundamental functional
ities remain very similar.

Traditionally, in a computing device, the CPU is coupled to
a memory and an Input/Output (I/O) subsystem, directly or
through a bus, to perform the main functions of computing
devices such as inputting and outputting data, processing
data, and so forth. The memory may embed an operating
system (OS), computer programs, applications, and so forth.

Conventional operating systems are quite similar in archi
tecture, in that each tends to have conventional file and
memory operations, storage and graphical user interface
operations, and so forth. Architectures of conventional oper
ating systems include a layered design, device drivers, and
Application Programming Interfaces (APIs).

In conventional operating systems, a core kernel essen
tially has master control over all the operations of the over
lying Software, components, device drivers, applications, and
So forth. Traditionally, operating systems implement multi
tasking through time slicing and sequential allocation of
computer resources to various threads and processes. A
thread generally runs within a process and shares resources,
e.g., memory, with other threads within the same process,
whereas a process generally runs self-contained within its
own right and completely independently of any other process.
In multi-tasking, when a computing device includes a single
processor, the operating system instructs the processor to
switch between different threads and implement them

10

15

25

30

35

40

45

50

55

60

65

2
sequentially. Switching generally happens frequently enough
that the user may perceive the threads (or tasks) as running
simultaneously.
Many conventional computing devices utilize multiproces

sors, or multicore processors, which may truly allocate mul
tiple threads or tasks to run at the same time on different cores.
However, conventional multicore processor architectures
involve a small number of cores (typically 2, 4, 6, or 8 cores)
due to the design limitations of traditional hardware and
traditional operating systems. In the case of a conventional
multicore processor, the computing device still must imple
ment time slicing and Switching between different threads on
each of its cores when performing several tasks involving
multithreading allocated through the cores. In other words,
even conventional multicore processors cannot implement
true multitasking.

Traditional processor architectures are also knownto expe
rience hanging, cycling, or crashing of the threads when
applications are poorly written or purposely malicious. In
many instances, a thread crash may bring the whole processor
down and result in time-division multiplexing of various
threads or processes.

Conventional processor designs use a fixed-frequency,
continuously running crystal as the timing mechanism for
clocking through microprocessor execution cycles. Thus, the
crystal and the processor may continue running even if noth
ing is being accomplished in the computing device, uselessly
cycling around and waiting for a process to actually perform
an action. This timing paradigm results in wasted energy.
First, the crystal and processor transistors typically execute at
their maximum speed at all times, thereby consuming excess
power and generating excess heat. Secondly, it is inefficient to
continue running clock cycles if no substantive process is
actually running. However, these inefficiencies are unavoid
able in the conventional operating system design.

Furthermore, conventional operating systems require vari
ous modifications and enhancements each year, such as incor
poration of new communications layers for Ethernet drivers,
Transmission Control Protocol/Internet Protocol (TCP/IP)
stacks, Web browsers, and the like. Generally, these new
layers are added on top of the conventional operating system,
thereby increasing complexity, decreasing performance, and
often leading to software crashes and security flaws.

SUMMARY

This Summary is provided to introduce a selection of con
cepts in a simplified form that are further described below in
the Detailed Description. This summary is not intended to
identify key features or essential features of the claimed sub
ject matter, nor is it intended to be used as an aid in determin
ing the scope of the claimed Subject matter.

In accordance with various embodiments disclosed herein,
a computing device having multiple CPUs interconnected to
each other is provided. Each CPU embeds an operating sys
tem of an entirely new architecture. This operating system
may be based fundamentally around an Internet stack, for
example, the TCP/IP stack (instead of including a TCP/IP
layer as in a conventional core operating system) and may
utilize a conventional interface or similar extensions of the
standard Berkeley Sockets (or WinSock) APIs.

In accordance with various embodiments disclosed herein,
a computing apparatus is provided. The computing apparatus
may comprise a set of interconnected central processing
units. Each CPU may embed an operating system (OS) com
prising an operating system kernel, the operating system ker
nel being a state machine and comprising a protocol stack. At

US 8,607,086 B2
3

least one of the CPUs may further embed executable instruc
tions for allocating multiple strands to one or more other
CPUs of the set of interconnected CPUs. It will be understood
that a strand, as used herein, is a hardware oriented process
and is not necessarily similar to a conventional unit of pro
cessing (i.e., a thread) that can be scheduled by an operating
system. The Internet Stack is a set of communication proto
cols used for the Internet and other similar networks. In one
example embodiment, the Internet stack may comprise a
TCP/IP stack Such that the OS kernel is a TCP/IP stack State
machine with proprietary extensions that can be used to
change or access internals of the TCP/IP stack state machine.
In another example embodiment, the Internet stack may com
prise a User Datagram Protocol/Internet Protocol (UDP/IP)
stack such that the OS kernel is a UDP/IP stack state machine
with proprietary extensions that can be used to change or
access internals of the UDP/IP stack state machine. The CPU
may comprise a processing unit, a memory and an I/O inter
face. Executable instructions for the operating system may be
stored within one or more types of storage media, such as for
example, Read-Only Memory (ROM), Programmable Read
Only Memory (PROM), Field Programmable Read-Only
Memory (FPROM), One-Time Programmable Read-Only
Memory (OTPROM), One-Time Programmable Non-Vola
tile Memory (OTP NVM), Erasable Programmable Read
Only Memory (EPROM), and Electrically Erasable Program
mable Read-Only Memory (EEPROM or Flash ROM).
The computingapparatus may further comprise at least one

asynchronous clock to serve as an internal clock for the oper
ating system. The asynchronous clock may be configurable to
automatically stop when clock cycles are no longer needed. A
time reference for the operating system kernel may be based,
for example, on a Network Time Protocol (NTP), Simple
Network Time Protocol (SNTP), or other suitable time pro
tocol from a remote time server. In an example, the operating
system may utilize a Sockets style API of sockets and ports on
IP addresses for handling I/O requests. The set of CPUs may
be interconnected through a bus. Executable instructions for
the operating system may be executed through a Sockets API.
The at least one CPU that embeds executable instructions for
allocating multiple strands may further comprise instructions
for generating multiple strands.

According to another embodiment, a method for operating
a computing apparatus is provided. The method may com
prise receiving I/O requests, generating multiple strands
according to the I/O requests, allocating the multiple strands
to one or more CPUs of a set of CPUs, and processing the
multiple strands. Each CPU may embed an operating system
(OS) having a kernel comprising a protocol stack.

According to various embodiments, the I/O requests may
be received by a CPU, which embeds executable instructions
for allocating multiple strands through multiple CPUs. Allo
cating multiple strands may comprise communicating data
via a network interface.

In one embodiment, the method may further comprise
assembling results of multiple strands processing. Executable
instructions for the operating system may be stored in a
memory and executed through a Sockets API.

According to Some embodiments, a non-transitory com
puter-readable storage medium is provided having embodied
instructions thereon, instructions executable by a processorin
a computing device to perform a method. The method may
comprise receiving an input/output (I/O) request, generating
one or more strands according to the I/O request, allocating
the one or more strands and/or processes to one or more
central processing units (CPUs) of a set of CPUs, wherein
each CPU of the set embeds an operating system (OS) having

10

15

25

30

35

40

45

50

55

60

65

4
a kernel comprising a protocol stack, and processing the one
or more strands and/or processes.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are illustrated by way of example and not
limitation in the figures of the accompanying drawings, in
which like references indicate similar elements.

FIG. 1 is a block diagram of a CPU, according to various
exemplary embodiments.

FIG. 2 illustrates an exemplary architecture of an Internet
stack State machine-based system, according to various
embodiments.

FIG. 3 is a flow chart illustrating a method for a CPU
embedding a protocol stack-based operating system, accord
ing to an exemplary embodiment.

FIG. 4 is a block scheme of a computing device, according
to various exemplary embodiments.

FIG. 5 is a computing environment, according to various
exemplary embodiments.

FIG. 6 is a flow chart of a method for processing I/O
requests by a computing device comprising multiple CPUs
with embedded Internet stack-based operating systems,
according to an exemplary embodiment.

DETAILED DESCRIPTION

Various aspects of the subject matter disclosed herein are
now described with reference to the drawings, wherein like
reference numerals are used to refer to like elements through
out. In the following description, for purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding of one or more aspects. It may be
evident, however, that Such aspects may be practiced without
these specific details. In other instances, well-known struc
tures and devices are shown in block diagram form in order to
facilitate describing one or more aspects.

Various embodiments disclosed herein relate to computing
devices comprising a set of interconnected CPUs. The num
ber of the CPUs is not limited, and may be more than 100, or
even more than 10,000, depending on specific application of
the computing devices. The CPUs may be interconnected
(e.g., through one or more buses) so that multiple strands,
processes, and tasks can be allocated among a few or even all
CPUs, thereby implementing parallelism or true multi-task
ing. According to some embodiments, each of some or all of
the CPUs is allocated a respective strand.
As used herein, the term "central processing unit relates to

a processor, a microprocessor, a controller, a microcontroller,
a chip, or other processing device that carries out arithmetic
and logic instructions of an operating system, a computer
program, an application, or the like. According to various
embodiments disclosed herein, the CPU comprises a process
ing unit (typically including an arithmetic logic unit and a
control unit) and a memory (also known as “registers.” or
Read Only Memory (ROM)). In some embodiments, the CPU
may further comprise an I/O Subsystem (Interface) to allow
data transfer between the CPU and any other devices such as
another CPU or I/O devices such as a keyboard, mouse,
printer, monitor, network controller, and so forth.
The CPU memory may store an operating system based

entirely on a protocol stack. A protocol stack, as used herein,
is a particular software implementation of a computer net
working protocol suite. The protocol stack may be a TCP/IP
stack, UDP/IP stack, Internet Control Message Protocol
(ICMP) stack, combinations thereof, or other protocols. The

US 8,607,086 B2
5

operating system embedded in the CPU is fundamentally a
state machine. The kernel of the operating system is funda
mentally a protocol stack.

Such an operating system is inherently Internet-oriented
and all Internet type functionality is natural and inherent in its
protocol stack-based processor design and implementation.
In addition, such an operating system may operate within
small hardware, be run by very compact and efficient soft
ware, possess minimal clock cycles for execution, have a
natural Internet connectivity model and ultra low power con
Sumption.

FIG. 1 illustrates a block diagram of an exemplary CPU
100. The CPU 100 may be a processor, a microprocessor, a
chip, or the like. The CPU 100 may include a memory 110.
which may embed an operating system and, optionally, fur
ther software applications. The operating system may com
prise a kernel to provide communications between Software
and hardware components/modules. The kernel may be a
state machine with extensions and may comprise an Internet
stack. The Internet stack may include a set of communication
protocols used for the Internet and similar networks. For
example, the Internet stack may include a TCP/IP stack so
that the OS kernel is a TCP/IP stack state machine. According
to another example, the Internet stack includes a UDP/IP
stack such that the OS kernel is a UDP/IP stack state machine.
According to yet another example, the Internet stack includes
a ICMP stack such that the OS kernel is a ICMP stack state
machine.
The memory 110 may store one or more modules. Exem

plary modules, which may be stored in the memory 110.
include an I/O request receiver module 120, a protocol han
dling module 130, an I/O request processing module 140, and
an optional network interface module 150. It will be appreci
ated by one skilled in the art that the technology described
herein encompasses those embodiments where one or more
of the modules may be combined with each other or not
included in the memory 110 at all.
The CPU 100 may further include a processing unit 160 for

executing various instructions and running modules stored in
the memory 110. The processing unit 160 may comprise an
arithmetic logic to carry out mathematical functions, and a
control unit to regulate data flow through the processing unit
160 and the CPU 100. Those skilled in the art would under
stand that any suitable architecture of the processing unit 160
is applicable.
A module should be generally understood as one or more

applications (routines) that perform various system-level
functions and may be dynamically loaded and unloaded by
hardware and device drivers as required. The modular soft
ware components described herein may also be integrated as
part of an application specific component.

According to various embodiments, the modules may each
include executable instructions for the operating system
embedded into CPU 100 and may be executed through a
Sockets API.
The I/O request receiver module 120 may be configured to

receive I/O requests. The requests may be from an application
residing in an application layer of a computing device (as
described in further detail with respect to FIG. 2).
The protocol handling module 130 may be configured to

handle a specific protocol for the protocol stack State machine
implementation. For example, the protocol may be a TCP/IP
stack such that the operating system is a TCP/IP stack state
machine. In some embodiments, the protocol stack may
include a different protocol stack (e.g., a UDP/IP stack or
ICMP stack which may be used in addition to or in place of the
TCP/IP stack).

5

10

15

25

30

35

40

45

50

55

60

65

6
The operating system may utilize Sockets style API of

Sockets and ports on IP addresses for handling I/O requests.
The I/O request processing module 140 may be configured to
process the I/O requests from an application according to the
network protocol using the operating system.
The optional network interface module 150 may be

included and is configured to provide an interface between the
protocol stack state machine and a network interface. The
corresponding network interface may be a hardware unit or a
“soft Ethernet controller.
The CPU 100 may also comprise a clock. The CPU 100

may require a clock to drive the state transitions as the CPU
100, for instance, reads and decodes opcodes. Conventionally
this is done by some external oscillator circuitry, typically
driven by a fixed-frequency crystal. However, clocking may
also be done by more than one crystal, e.g. a high frequency
crystal (e.g., 50 MHz) one for the main CPU core, and other
(lower frequency) crystals for other uses, e.g., programmable
timers, watchdog timers etc. Also, a system comprising for
instance a Universal Asynchronous Receiver/Transmitter
(UART) and a Network Interface Controller (NIC) also typi
cally require clockinputs of some sort. For instance, a UART
may need a reliable clock source all the way from perhaps 300
baud up to 921,600 baud. A NIC running 100 MBit Ethernet
would typically need a clock source of 50 MHz or 25 MHz.

Typically, a computer system needs to keep track of time,
and can do so using internal counters to keep track of its
internal clocks. However, in the case of an Internet-connected
device. Such as in various embodiments described herein, the
device is connected to the Internet and thus has readily avail
able external time sources, for instance from Network Time
Protocol (NTP), Simple Network Time Protocol (SNTP), or
other suitable time protocols from a remote server (i.e., time
protocol servers). For CPU 100, the processing unit 160 that
may be included may utilize a time reference using the NTP
SNTP or other suitable time protocol from a remote time
server. Alternatively, the Precision Time Protocol (PTP) can
be used for synchronization within a Local Area Network
(LAN).

According to some example embodiments, an asynchro
nous (variable) clock may serve as an internal clock for the
operating system for the CPU 100. The asynchronous clock
may be configurable to automatically stop when clock cycles
are no longer needed. The asynchronous system clock may be
restarted by a wake-up "daemon' signal from the SNMP
daemon (for example, an incoming data packet).

Furthermore, a combination of the above-mentioned
clocking approaches can be used. For example, in the initial
phases, the internal clock may be used to trigger the CPU 100.
The internal clock may be utilized until the CPU 100 is fully
active, at which time most or all of the clock requirements
may be transitioned to external time protocols, e.g., using
Internet time servers using NTP, SNTP, or other suitable time
protocols from a remote time server, or using PTP and SNMP
to take over the control of the clocking operations. This would
mean that internal clock circuitry for CPU 100 could be
turned off, thus conserving power.

Executable instructions for the CPU 100 may be optimized
to be more efficient than conventional CPUs so that much
lower clock rates are used. A self-adjusting cycle rate may be
provided depending on the load and function to be performed.
In addition, self-learning or predetermined algorithms for
expected scenarios may be utilized to put the CPU 100 into a
sleep or doze' mode. An expected external event may cause
the CPU 100 to exit the doze mode, resume full speed opera
tion to execute necessary operations and handle the external
event, and return back to doze. In a doze or a deep sleep mode,

US 8,607,086 B2
7

the CPU register contents may be read and stored in special
registers with long deep-sleep data maintaining capabilities.
Such clock saving measures may yield Substantial power
savings.

FIG. 2 illustrates an exemplary architecture 200 for a TCP/
IP stack state machine-based system, according to various
embodiments. The operating system kernel may include vari
ous components operating between applications 210 and
hardware 220. The kernel may include a TCP stack 232, UDP
stack 236, and/or ICMP stack 240, around which the operat
ing environment may be built. The kernel may include TCP
extensions 230, UDP extensions 234, ICMP extensions 238,
which together with the respective TCP stack 232, the UDP
stack 236, and the ICMP stack 240 are shown above an IP
layer 250. The kernel may include one or more device drivers
260, 262, and 264, as well as an Ethernet controller 270.
The API for all operations of the operating system may

include the conventional Berkeley Sockets style API of sock
ets and ports on IP addresses. The Berkeley Sockets may
specify the data structures and function calls that interact with
the network Subsystem of the operating system. The kernel
may handle the normal Sockets APIs. The Sockets API 280
may also include Some optimized APIs.
Any non-conventional functions (i.e., outside the normal

functions used to communicate over the Internet) may be
handled in a similar manner (e.g., by opening sockets and
binding to ports). Thus, accessing of local input and output
(e.g., keyboards, mice, and display Screens) may be accom
plished through socket/port operations. Consequently, it is
quite transparent as to whether a device is local or remote. A
keyboard could beat a local hostat, for example, 127.0.0.1, or
remote at another IP address. Though this transparency may
bean aspect of other operating systems, it may not be inherent
in the operating system design from the outset. Accordingly,
the size of a basic kernel may be very small in a minimal
configuration, perhaps as Small as a few hundred bytes. It will
be understood that the Windows Sockets technology above is
mentioned merely for the purpose of providing an example.
In contrast to the present technology, in the Windows Sockets
technology communications with a display device over the
Internet may be cumbersome.

FIG.3 is a flow chart illustrating an exemplary method 300
for a CPU embedding a protocol stack-based operating sys
tem. The method 300 may commence at operation 310 with
receiving an I/O request. The request may be from an appli
cation residing in an applications layer 210 of a computing
device. In operation 320, the network protocol may be deter
mined. According to some embodiments, the protocol is TCP/
IP so that the operating system is a TCP/IP stack state
machine. In some other embodiments, the protocol is UDP/IP.
UDP is an unreliable connectionless protocol sitting on top of
IP, and TCP is a connection-oriented reliable protocol. The
protocol may be a hybrid of TCP and UDP, wherein a data
connection stream includes a mixture of UDP and TCP pack
ets. UDP has less overhead and is suitable for lower-impor
tance information, whereas TCP has a higher overhead but
essentially guarantees delivery. For instance, a stream of data
comprising non-essential information (Such as low-impor
tance data) mixed with critical data could better be transmit
ted over such a hybrid link. This hybrid protocol may be
determined in operation 320.

In operation 330, the I/O request may be processed accord
ing to the network protocol. The processing may be per
formed by the State machine that is the operating system (e.g.,
a TCP/IP stack state machine operating system). The operat
ing system may utilize a Sockets style API of sockets and
ports on IP addresses for handling I/O requests. The conven

10

15

25

30

35

40

45

50

55

60

65

8
tional Berkeley Sockets style API of sockets and ports on IP
addresses may be used. The Berkeley Sockets may specify the
data structures and function calls that interact with the net
work Subsystem of the operating system.

FIG. 4 is a block scheme of a computing device 400,
according to an exemplary embodiment. The computing
device 400 may comprise five CPUs 410, 412, 414, 416, and
418. Despite the fact that five CPUs are shown, it will be
appreciated by one skilled in the art that any number of CPUs
may be used in the computing device 400. Some embodi
ments may include up to 10,000 CPUs or even more.
The CPUs 410,412,414, 416, and 418 may all be coupled

to a bus line 420 So that they may communicate data amongst
each other. According to various embodiments disclosed
herein, each CPU embeds an operating system based on a
protocol stack. The protocol stack may be a TCP/IP protocol
stack, UDP/IP stack, combinations thereof (i.e., hybrid
stack), or other appropriate protocols. One particular example
of the CPU embedding a TCP/IP stack-based operating sys
tem is described with reference to FIG. 1.

Although not shown in FIG. 4, the CPUs 410, 412, 414,
416, and 418 may each include a memory storing an operating
system and/or any further executable instructions and/or data.
The memory can be implemented within the CPU or exter
nally. In one example, all CPUs 410, 412, 414, 416, and 418
may share a single memory coupled to the bus 420. As used
herein, the term “memory” refers to any type of long term,
short term, Volatile, nonvolatile, or other storage devices and
is not limited to any particular type of memory or number of
memories, or type of media upon which memory is stored.
The CPUs 410, 412, 414, 416, and 418 in the example in

FIG. 4 may further comprise an I/O Interface (not shown)
implemented as software and/or hardware. One particular
example of software implementation of the I/O Interface is
shown as optional Network Interface Module 150 in FIG. 1.
Alternatively, a hardware implementation may comprise an
I/O controller, a Network Interface Controller (NIC) as an
Ethernet controller, or the like. It will be apparent to those
skilled in the art that the I/O interface may support any com
munication standards and provide communications over a
serial connection, parallel connection, firewire connection,
Ethernet connection, and so forth.
Each of the CPUs may further comprise a clock (not

shown), which can be implemented within each CPU or exter
nally. According to various embodiments, a single clock may
be shared by all CPUs.
One or more of the CPUs may embed a Master Control

Program (MCP) 430. According to the example in FIG.4, the
CPU 410 embeds the MCP430. The MCP430 is an applica
tion or a routine for managing operations of the remaining
CPUs 412, 414, 416, and 418 and, therefore, the CPU 410
may be considered a “Master Core.” More specifically, the
MCP 430 may be configured to receive I/O requests from
outside devices, generate multiple Strands (processes, tasks)
according to the I/O requests, and allocate these strands (pro
cesses) to the other CPUs 412, 414, 416, and 418 so that the
overall computational load is selectively distributed among
the CPUs 412, 414, 416, and 418. However, in some embodi
ments, strands may be allocated to some of the CPUs 412,
414, 416, and 418, or to just one CPU. According to some
embodiments, each of a number of CPUs (i.e., one, some, or
all of the CPUs) is each allocated a respective strand. After
execution of all strands and/or processes allocated to different
CPUs, the results of the computations may be assembled in
the Master Core for further outputting. Alternatively, the
CPUs 412, 414, 416, and 418 may deliver results directly to
corresponding external devices. According to some embodi

US 8,607,086 B2
9

ments, the computing device 400 may comprise several Mas
ter Cores for processing different types of I/O requests. In yet
another embodiment, one Master Core may process all
incoming I/O requests, while other Master Cores may be
utilized for assembling the output of multiple CPUs, and
transmitting of the assembled output results to corresponding
outside devices. Those who are skilled in the art would readily
understand that any possible number of Master Cores is pos
sible, and each Master Core may implement the same or
different functions.

According to various exemplary embodiments, whenevera
strand or process is created (e.g., by a typical 'C' CreateTh
read(. . .) function call), the MCP physically allocates a
hardware core stack to the strand (or process). An allocated
core stack/strand combination may also be referred to as a
“core Strand’. The cores (or core Strands) may form a massive
array in which core strands may be wired as a block to share
resources (e.g., memory), or allowed to share the resources
over their interconnects. Cores in the (massive) array of cores
may be connected to each other, e.g., interconnected by a
web-like structure. Cores may be allocated processes in some
embodiments, i.e., cores which are processes or “process
cores'. Such exemplary process cores are naturally isolated
from other process cores since processes run independently
of other processes, each process containing their own
resources, in contrast to strands where resources may be
shared therebetween.
The computing device 400 allows only a certain number of

CPUs to operate while the remaining CPUs, not involved in
the processing, are turned off. For example, the computing
device 400 may comprise 1,000 CPUs and a single Master
Core. In response to the I/O request, the Master Core may
generate 600 strands (variously within a number of processes)
and allocate them to 600 CPUs. The remaining 400 CPUs
may be turned off to conserve power. If another 100 strands
later become needed, 100 of the 400 CPUs may be turned on
in response to the allocating of the 100 strands to them so that
the total number of the CPUs executing instructions becomes
700. As clearly shown in this example, the overall power
consumption is reduced compared to the traditional system
where all processors run all the time, even if there is no
process or strand to execute.
The computing device 400 may facilitate greater stability

of operations when compared to conventional multicore pro
cessors. When one of the Strands crashes, for example, due to
a poorly written routine or for some other reason, only the
CPU running the strand is affected, while other CPUs remain
unaffected. This is in contrast to conventional systems where
the entire multicore processor may become affected by a
single strand crash.

FIG. 5 illustrates an exemplary embodiment of a comput
ing environment 500. The computing environment 500 may
comprise a computing device 510 (which is described in
greater detail with reference to FIG. 4), a memory 520, a clock
530, and communication ports 540, all of which may be
coupled to a bus 550.
The memory 520 may include any memory configured to

store and retrieve data. Some examples of the memory 520
include storage devices. Such as a hard disk, magnetic tape,
any other magnetic medium, a CD-ROM disk, digital video
disk (DVD), any other optical medium, any other physical
medium with patterns of marks or holes, a RAM, a ROM, a
PROM, an EPROM, an EEPROM, a FLASHEPROM,
OTPROM, OTPNVM, Flash ROM or any other memory chip
or cartridge, or any other medium from which a computer can
read instructions. The memory 520 may comprise a data
structure configured to hold and organize data. The memory

10

15

25

30

35

40

45

50

55

60

65

10
520 may comprise executable instructions of the operating
system and/or other routines and applications. The memory
520 may also comprise a MCP, as described above with
reference to FIG. 4.
The clock 530 may serve as an asynchronous clock for the

operating system for one or more CPUs of the computing
device 510. The asynchronous clock may be configured to
automatically stop when clock cycles are not needed.
Communication ports 540 represent a connection interface

that allows asynchronous transmission of data between the
computing environment 500 and any edge devices such as a
keyboard, mouse, monitor, printer, CD-ROM drive, network
controller, and so forth.
The computing environment 500 may be implemented as a

desktop computer, a laptop computer, a mobile telephone, a
Smartphone, a PDA, and many other consumer electronic
devices.

FIG. 6 is a flow chart of an exemplary method 600 for
processing I/O requests by a computing device comprising
multiple CPUs, with the CPUs each embedding a protocol
stack-based operating systems.
The method may commence in operation 610, when a CPU

embedding a MCP (i.e., a Master Core) receives an I/O
request. In optional operation 620, the network protocol may
be determined. According to various embodiments, the pro
tocol is TCP/IP, UDP/IP, a combination thereof, or the like. In
operation 630, the Master Core may generate multiple strands
(e.g., within processes) according to the I/O requests and the
determined (optional in operation 620) network protocol. In
operation 640, the Master Core may schedule and allocate the
multiple strands among one or more CPUs 412,414, 416, 418
(see FIG. 4) and other CPUs of the computing device. The
allocation of multiple Strands may include communicating
data via a network interface (e.g., via a bus using I/O inter
faces of the CPUs).

In operation 650, the strands (or alternatively the processes
which contain strands) may be processed in the one or more
CPUs. According to various embodiments, the processing at
each CPU is performed by the state machine that is the oper
ating system, e.g., a TCP/IP stack State machine operating
system. The operating system may utilize Sockets style API
of sockets and ports on IP addresses for handling these
Strands.

In optional operation 660, processing results (e.g., arith
metical or logic results) from multiple CPUs may be
assembled by the Master Core for further outputting. Accord
ing to another example, assembling may be performed within
a different CPU, or, alternatively, processing results may be
directly transmitted to a corresponding edge device.
The following provides an overview of the functionalities

facilitated by protocol stack-based multiple processors,
which can be used in different computing devices according
to various embodiments disclosed herein.
A conventional operating system may manage internal

tasks and external programs in a dictatorial manner, wherein
the appearance of multitasking is achieved through rapid
allocation of time slices among multiple strands and pro
cesses. Such a system may be flexible and of a general pur
pose. However, applications and unknown driver components
have little or no control over their scheduling in Such a system.

In contrast to a conventional operating system, the operat
ing system according to the various embodiments disclosed
herein is essentially a state machine. This results in the whole
environment being inherently cooperative and friendly to the
operating system as a state machine model. All systems and
application components are built together in an open and

US 8,607,086 B2
11

symbiotic relationship. Only components actually required in
a target system are built into the environment.

In a conventional operating system, the kernel and other
systems components include all the normal functions of file
and memory management, timers, input and output, TCP/IP.
and the like. There are numerous strands and processes going
on, such as kernel executive cycles around all the running
processes, updating clocks, checking communication ports,
updating displays, checking on Ethernet traffic, and so forth.
AS Such, the conventional operating system provides a highly
sophisticated and flexible system, but with the downside of a
tremendous number of activities (and hence clock cycles and,
therefore, energy) going on all the time.

In contrast, an implementation according to various
embodiments disclosed herein may include only the required
components. As a result, execution times and code sizes may
be optimized, resulting in fewer energy cycles. Such comput
ing device may have a number of state machines handling the
operations at a lower level and forwarding data packets up
through the TCP/IP stack. When no tasks need to be per
formed, the state machines are idle. Therefore, the protocol
stack-based CPUs according to various embodiments dis
closed herein eliminate unnecessary internal clock cycles
through the use of intelligent tasking, in contrast to conven
tional multi-tasking.

The ultra-low power aspect of the computing device
according to the embodiments disclosed herein may provide
greatly improved battery life for various devices. Boot up
time for devices may be greatly reduced by executing instruc
tions from the ROM, saving general state information in
battery-backed SRAM, and saving crucial microprocessor
register setting and other state information in special registers
in custom application-specific integrated circuits (ASICs),
for example.
A full IP stack typically includes an application layer,

transport layer, Internet layer, and link layer. The basic oper
ating system for the computing device may not normally have
all the components of a full IP stack. A basic kernel may have,
for example, just HTTP on top of TCP on top of IP on top of
Ethernet. Alternatively, the kernel may be built with SNMP
on UDP on IP on Ethernet. Those who are skilled in the art
would readily understand that various possible implementa
tions are possible.

The computing device may also attempt to identify which
Sub-processes in a larger process need to be executed sequen
tially and which Sub-processes may be executable in parallel.
The computing device may provide a model of a set of simple
state machines. In complex systems, a State Machine Man
ager (SMM) may be provided to regulate and control the run
flow. In operation, applications registerpriority and execution
parameter requests with the SMM, which in turn handles
them accordingly in a fair manner.

Conventionally, multicore processors are designed first,
and thereafter an operating system is designed to run on Such
processors. As a result, the operating system design is limited
by compromises dictated by the multicore processor design.
The applications are then designed to run on the operating
system. The design of the applications is limited by all the
limitations dictated by the particular operating system design.

In contrast to this conventional design process, an operat
ing system may be designed first according to the embodi
ments described herein. Any unnecessary aspects may be
removed for the design. A computing device having multiple
CPUs may then be designed. The design process may be
iterated to make still further reductions down to the essential
components.

12
According to various embodiments, the operating system

code executes within a ROM. While saving register contents
during a deep sleep, execution within the ROM and as a state
machine provide an “instant-on' capability where it may take

5 just milliseconds for the system to resume execution. ARAM

10

15

25

30

35

40

45

50

55

60

65

memory may be used for only truly read-write data that
requires it, while the execute-only code may be stored in the
ROM. The slower access times of ROM devices versus RAM
devices may not cause an issue, because the instruction cycle
times for the system are generally slow, albeit for a reduced
number of cycles.
The terms “computer-readable storage medium' and

“computer-readable storage media” as used herein refer to
any medium or media that participate in providing instruc
tions to a CPU for execution. Such media can take many
forms, including, but not limited to, non-volatile media, Vola
tile media and transmission media. Non-volatile media
include, for example, optical or magnetic disks, such as a
fixed disk. Volatile media include dynamic memory, Such as
system RAM. Transmission media include coaxial cables,
copper wire, and fiber optics, among others, including the
wires that comprise one embodiment of a bus. Common
forms of computer-readable media include, for example, a
floppy disk, a flexible disk, a hard disk, magnetic tape, any
other magnetic medium, a CD-ROM disk, DVD, any other
optical medium, any other physical medium with patterns of
marks or holes, a RAM, a PROM, an EPROM, an EEPROM,
a FLASHEPROM, any other memory chip or cartridge, or
any other medium from which a computer can read.

Various forms of computer-readable media may be
involved in carrying one or more sequences of one or more
instructions to a CPU for execution. A bus may carry the data
to system ROM (or RAM), from which a CPU retrieves and
executes the instructions. The instructions received by System
ROM (or RAM) may optionally be stored on a fixed disk
either before or after execution by a CPU.
The above description is illustrative and not restrictive.

Many variations of the embodiments will become apparent to
those of skill in the art upon review of this disclosure. The
scope of the subject matter should, therefore, be determined
not with reference to the above description, but instead should
be determined with reference to the appended claims along
with their full scope of equivalents.

While the present embodiments have been described in
connection with a series of embodiments, these descriptions
are not intended to limit the scope of the subject matter to the
particular forms set forth herein. It will be further understood
that the methods are not necessarily limited to the discrete
steps or the order of the steps described. To the contrary, the
present descriptions are intended to cover Such alternatives,
modifications, and equivalents as may be included within the
spirit and scope of the Subject matter as disclosed herein and
defined by the appended claims and otherwise appreciated by
one of ordinary skill in the art.

What is claimed is:
1. A computing apparatus, comprising:
a set of interconnected central processing units (CPUs),

each of the CPUs embedding an operating system (OS),
the OS comprising an operating system kernel, the oper
ating system kernel being a state machine based on a
network protocol stack; and

at least one of the CPUs further embedding executable
instructions for allocating multiple strands to one or
more other CPUs of the set of interconnected CPUs.

2. The apparatus of claim 1, wherein the one or more other
CPUs includes all other CPUs of the set such that the at least

US 8,607,086 B2
13

one of the CPUs embeds executable instructions for allocat
ing multiple strands to all other CPUs of the set of intercon
nected CPUs.

3. The apparatus of claim 1, wherein the one or more other
CPUs includes less than all of the other CPUs of the set, any
of the CPUs not allocated strands being turned off to conserve
power.

4. The apparatus of claim 1, wherein the one or more other
CPUs includes less than all of the other CPUs of the set, and
wherein any of the CPUs not allocated strands are placed in a
sleep mode to conserve power.

5. The apparatus of claim 1, wherein the network protocol
stack comprises a User Datagram Protocol/Internet Protocol
(UDP/IP) stack such that the OS is a UDP/IP stack state
machine or Internet Control Message Protocol (ICMP) stack
Such that the OS is ICMP Stack.

6. The apparatus of claim 1, wherein each of the CPUs
comprises a processing unit, a memory and an Input/Output
(I/O) interface.

7. The apparatus of claim 6, wherein the memory includes
one or more of the following memory types: a Read-Only
Memory (ROM), Programmable Read-Only Memory
(PROM), Field Programmable Read-Only Memory
(FPROM), One-Time Programmable Read-Only Memory
(OTPROM), One-Time Programmable Non-Volatile
Memory (OTPNVM), Erasable Programmable Read-Only
Memory (EPROM), and Electrically Erasable Programmable
Read-Only Memory (EEPROM or Flash ROM), the execut
able instructions for the OS being stored within the one or
more memory types wherein all operations for the OS are
executed using a Sockets applications programming interface
(API).

8. The apparatus of claim 1, further comprising at least one
asynchronous clock to serve as an internal clock for the OS.

9. The apparatus of claim 8, wherein the asynchronous
clock is configurable to automatically stop when clock cycles
are no longer needed.

10. The apparatus of claim 1, wherein a time reference for
the OS kernel is based on a Network Time Protocol (NTP),
Simple Network Time Protocol (SNTP), or a Precision Time
Protocol (PTP).

11. The apparatus of claim 1, wherein the set of intercon
nected CPUs are interconnected through a bus.

12. The apparatus of claim 1, wherein executable instruc
tions for the operating system are executed through a Sockets
applications programming interface (API).

13. The apparatus of claim 1, wherein the OS utilizes a
Sockets style API of sockets and ports on Internet Protocol
(IP) addresses for handling I/O requests.

14. The apparatus of claim 1, wherein the at least one CPU
embedding executable instructions for allocating multiple
Strands further comprises instructions for generating multiple
Strands.

15. The apparatus of claim 1, where the set of intercon
nected CPUs comprises 1000 interconnected CPUs.

10

15

25

30

35

40

45

50

14
16. A method, comprising:
receiving an input/output (I/O) request;
generating one or more strands according to the I/O

request:
allocating the one or more strands to one or more central

processing units (CPUs) of a set of CPUs, wherein each
CPU of the set embeds an operating system (OS) having
a kernel based on a network protocol stack; and

processing the one or more strands.
17. The method of claim 16, wherein any of the CPUs not

allocated at least one of the strands is turned off to conserve
power.

18. The method of claim 16, wherein the network protocol
stack comprises a Transmission Control Protocol/Internet
Protocol (TCP/IP) stack such that the OS is a TCP/IP stack
state machine.

19. The method of claim 16, wherein the network protocol
stack comprises a User Datagram Protocol/Internet Protocol
(UDP/IP) stack such that the OS is a UDP/IP stack state
machine or Internet Control Message Protocol (ICMP) stack
Such that the OS is ICMP Stack.

20. The method of claim 16, wherein at least one of the
CPUs of the set of CPUs receives I/O requests, the at least one
CPU embedding executable instructions for allocating the
multiple strands to a number of the other CPUs of the set of
CPUS.

21. The method of claim 16, wherein allocating comprises
communicating data via a network interface.

22. The method of claim 16, further comprising assem
bling results of the processing.

23. The method of claim 16, wherein executable instruc
tions for the operating system are stored in one or more of the
following memory types: Read-Only Memory (ROM), Pro
grammable Read-Only Memory (PROM), Field Program
mable Read-Only Memory (FPROM), One-Time Program
mable Read-Only Memory (OTPROM), One-Time
Programmable Non-Volatile Memory (OTPNVM), Erasable
Programmable Read-Only Memory (EPROM), and Electri
cally Erasable Programmable Read-Only Memory (EE
PROM or Flash ROM), wherein all operations for the OS are
executed using a Sockets applications programming interface
(API).

24. A non-transitory computer-readable storage medium
having embodied instructions thereon, instructions execut
able by a processor in a computing device to perform a
method, the method comprising:

receiving an input/output (I/O) request;
generating one or more strands according to the I/O

request:
allocating the one or more strands to one or more central

processing units (CPUs) of a set of CPUs, wherein each
CPU of the set embeds an operating system (OS), the OS
comprising a kernel that is a state machine based on a
network protocol stack; and

processing the one or more strands.
k k k k k

