a2 United States Patent

Cullimore

US008607086B2

US 8,607,086 B2
*Dec. 10, 2013

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

@
(22)

(65)

(63)

(1)

(52)

(58)

MASSIVELY MULTICORE PROCESSOR AND
OPERATING SYSTEM TO MANAGE

STRANDS IN HARDWARE

Inventor: Ian Henry Stuart Cullimore,
Leominster (GB)

Assignee: IOTA Computing, Inc., Palo Alto, CA
(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/333,802

Filed: Dec. 21, 2011
Prior Publication Data
US 2013/0061078 Al Mar. 7, 2013

Related U.S. Application Data

Continuation of application No. 13/224,938, filed on
Sep. 2, 2011.

Int. Cl1.

GO6F 1/00 (2006.01)

GO6F 1726 (2006.01)

GO6F 1/32 (2006.01)

GO6F 15/16 (2006.01)

GO6F 9/46 (2006.01)

U.S. CL

USPC ... 713/323; 713/300; 713/320; 709/201;

718/105

Field of Classification Search
None
See application file for complete search history.

| Receive /O requests ‘

(56) References Cited
U.S. PATENT DOCUMENTS
5,469,553 A 11/1995 Patrick
5,493,689 A 2/1996 Waclawsky et al.
5,710,910 A 1/1998 Kehl et al.
5,896,499 A 4/1999 McKelvey
5,968,133 A 10/1999 Latham et al.
6,714,536 Bl 3/2004 Dowling
7,002,979 Bl 2/2006 Schneider et al.
7,036,064 Bl 4/2006 Kebichi et al.
(Continued)
FOREIGN PATENT DOCUMENTS
CN 1622517 6/2005
™ 200924424 6/2009
WO WO02011056808 5/2011
OTHER PUBLICATIONS

Ashkenazi et al. “Platform Independent Overall Security Architec-
ture in Multi-Processor System-On-Chip ICs for Use in Mobile
Phones and Handheld Devices,” World Automation Congress, Jul.
24-26, 2006. [Accessed Feb. 18, 2011-Engineering Village].

(Continued)

Primary Examiner — Ji H Bae
(74) Attorney, Agent, or Firm — Carr & Ferrell LLP

(57) ABSTRACT

A computing apparatus and corresponding method for oper-
ating are disclosed. The computing apparatus may comprise a
set of interconnected central processing units (CPUs). Each
CPU may embed an operating system including a kernel
comprising a protocol stack. At least one of the CPUs may
further embed executable instructions for allocating multiple
strands among the rest of the CPUs. The protocol stack may
comprise a Transmission Control Protocol/Internet Protocol
(TCP/IP), a User Datagram Protocol/Internet Protocol (UDP/
IP) stack, an Internet Control Message Protocol (ICMP) stack
or any other suitable Internet protocol. The method for oper-
ating the computing apparatus may comprise receiving input/
output (I/O) requests, generating multiple strands according
to the I/O requests, and allocating the multiple strands to one
or more CPUs.

24 Claims, 6 Drawing Sheets

600 P

D

US 8,607,086 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

7,055,173 Bl 5/2006 Chaganty et al.

7,246,272 B2 7/2007 Cabezas et al.

7,308,686 B1 12/2007 Fotland et al.

7,334,124 B2 2/2008 Pham et al.

7,509,673 B2 3/2009 Swander et al.

7,657,933 B2 2/2010 Hussain et al.

7,694,158 B2* 4/2010 Melpignano etal. 713/300

7,734,933 Bl 6/2010 Marek et al.

7,770,179 Bl 8/2010 James-Roxby et al.

7,886,340 B2 2/2011 Carley

8,055,822 B2* 11/2011 Bernsteinetal. 710/65

8,132,001 Bl 3/2012 Patten et al.
2002/0007420 Al* 1/2002 Eydelman et al. 709/235
2002/0167965 Al* 11/2002 Beasley et al. 370/465

2003/0084190 Al
2004/0049624 Al
2004/0093520 Al
2004/0143751 Al
2004/0210320 Al
2006/0026162 Al
2006/0133370 Al
2007/0008976 Al
2007/0022421 Al
2007/0118596 Al
2007/0211633 Al
2007/0255861 Al
2008/0046891 Al
2008/0109665 Al
2009/0126003 Al
2009/0158299 Al
2009/0235263 Al

5/2003 Kimball
3/2004 Salmonsen
5/2004 Lee et al.
7/2004 Peikari
10/2004 Pandya
2/2006 Salmonsen et al.
6/2006 Eldar
1/2007 Meenan
1/2007 Lescouet et al.
5/2007 Patiejunas 709/203
9/2007 Gunawardena et al. 370/232
11/2007 Kain et al.
2/2008 Sanchorawala et al.
5/2008 Kuhlmann et al.
5/2009 Touboul
6/2009 Carter
9/2009 Furukawa ...

* %

. 719/319
. 718/102

* ¥ ¥ ¥

2010/0005323 Al 1/2010 Kuroda et al. . 713/300
2010/0115116 Al 5/2010 Asnaashari 709/230
2010/0131729 Al 5/2010 Fulcheri et al.

2010/0185719 Al* 7/2010 Howardccoeee. 709/201

2010/0192225 Al
2011/0002184 Al
2011/0088037 Al
2011/0107357 Al
2012/0017262 Al
2012/0042088 Al

OTHER PUBLICATIONS

7/2010 Ma et al.
1/2011 Kim

4/2011 Glistvain
5/2011 Cullimore
1/2012 Kapoor et al.
2/2012 Cullimore

Bathen et al. “Inter and Intra Kernel Reuse Analysis Driven Pipelin-
ing on Chip-Multiprocessors,” Intemational Symposium on VLSI
Design, Automation and Test, Apr. 26-29, 2010. p. 203-207.
[Accessed Feb. 16, 2011—IEEExplore] http://iceexplore.ieee.org/
xpis/abs all jsp?amumber=5496725.

Bolchini et al. “Smart Card Embedded Information Systems: A
Methodology for Privacy Oriented Architectural Design,” Data &
Knowledge Engineering, 2002. vol. 41, No. 2-3, p. 159-182.
[Accessed Feb. 16, 2011-ScienceDirect.com].

Ferrante et al. “Application-Driven Optimization of VLIW Architec-
tures: A Hardware—Software Approach,” 11th IEEE Real Time and
Embedded Technology and Applications Symposium, Mar. 7-10,
2005. pp. 128-137. [Accessed Feb. 15, 2011-IEEExplore] http://
ieeexplore.ieee.org/xpls/abs_ all.jsp?arnumber=1388380.

Green Hills Software, “1-I-velOSityTM Real-Time Microkemel,”
Accessed on Feb. 16, 2011 at http://www.ghs.com/products/micro__
velosity. html.

Green Hills Software, Inc., “p-velOSity Microkernel,” (datasheet)
2006.

Hattori. “Challenges for Low-Power Embedded SOC’s,” Interna-
tional Symposium on VLSI Design, Automation and Test, Apr. 25-27,
2007.p. L. [Accessed Feb. 16, 201 1—IEEExplore] http://iceexplore.
ieee.org/xpis/abs__ all jsp?arnumber=4239406.

Joumal of Techonology & Science, “Express Logic, Inc.; Express
Logic and IAR Systems Team Up to Provide ThreadX RTOS Support
in TAR Embedded Workbench IDE for Freescale ColdFire,”
Accessed on Feb. 16, 2011 at http://proquest.umi.com.mutex.gmu.
edu/pqdweb?index=7 &did=1541305

Ke et al. “Design of PC/1 04 Processor Module Based on ARM,”
International Conference on Electrical and Control Engineering, Jun.
25-27, 2010. p. 775-777. [Accessed Feb. 17, 2011—IEEExplore]
http://ieeexplore.icee.org/xpis/abs_ all.jsp?arnumber=5630566.
Kinebuchi et al. “A Hardware Abstraction Layer for Integrating Real-
Time and General-Purpose with Minimal Kernel Modification,” Soft-
ware Technologies for Future Dependable Distributed Systems, Mar.
17, 2009. p. 112-116.[Accessed Feb. 16, 2011-IEEExplore] http://
ieeexplore.ieee.org/xpls/abs_ all.jsp?arnumber=4804582.

Tabari, et al. “Neural Network Processor for a FPGA-based
Multiband Fluorometer Device,” Intemational Workshop on Com-
puter Architecture for Machine Perception and Sensing, Aug. 18-20,
2006. p. 198-202. [Accessed Feb. 16, 201 1—IEEExplore] http://
ieeexplore.ieee.org/xpls/abs_ all.jsp?amumber=4350381.

Wang et al. “Towards High-Performance Network Intrusion Preven-
tion System on Multi-core Network Services Processor,” 15th
Intemational Conference on Parallel and Distributed Systems, Dec.
8-11, 2009. p. 220-227. [Accessed Feb. 16, 201 1—IEEExplore].
Nguyen et al. “Real-Time Operating Systems for Small
Microcontrollers,” IEEE Micro, Sep.-Oct. 2009. vol. 29, No. 5, p.
30-45. [Accessed Feb. 15, 2011—IEEExplore] http://iceexplore.
ieee.org/xpis/abs_ all jsp?arnumber=5325154.

Ashkenazi et al. “Platform Independent Overall Security Architec-
ture in Multi-Processor System-on-Chip ICs for Use in Mobile
Phones and Handheld Devices,” World Automation Congress, Jul.
24-26, 2006. [Accessed Feb. 18, 2011—FEngineering Village].
Bathen et al. “Inter and Intra Kernel Reuse Analysis Driven Pipelin-
ing on Chip—Multiprocessors,” International Symposium on VLSI
Design, Automation and Test, Apr. 26-29, 2010. p. 203-206.
[Accessed Feb. 16, 201 1—IEEExplore] http://iceexplore.icee.org/
xpis/abs all jsp?amumber=5496725.

Bolchini et al. “Smart Card Embedded Information Systems: A
Methodology for Privacy Oriented Architectural Design,” Data &
Knowledge Engineering, 2002. vol. 41, p. 159-182. [Accessed Feb.
16, 2011—ScienceDirect.com].

Cavium Networks, “Nitrox® DPI L7 Content Processor Family,”
Accessed on Feb. 16, 2011 at http://www.caviumnetworks.com/pro-
cessor_ NITROX-DPLhtml.

Cavium Networks, “Nitrox® Lite,” Accessed on Feb. 16, 2011 at
http://www.caviumnetworks.com/processor__securitLnitroxLite.
htm.

Ferrante et al. “Application-Driven Optimization of VLIW Architec-
tures: A Hardware-Software Approach,” Proceedings of the 11th
IEEE Real Time and Embedded Technology and Applications Sym-
posium, Mar. 7-10, 2005. p. 128-137. [Accessed Feb. 15, 2011—
IEEExplore] http://ieeexplore.ieee.org/xpls/abs_ all.
jsp?arnumber=1388380.

Freescale Semiconductor, “IP Multimedia Subsystems,” 2006. (bro-
chure) [Accessed Feb. 16, 2011] http://cachelreescale.com/files/
32biUdoc/brochure/BRIMSSOLUTIONS.pdf.

Green Hills Software, “u-velOSity Real-Time Microkernel,”
Accessed on Feb. 16, 2011 at http://www.ghs.com/products/micro__
velosity. html.

Green Hills Software, Inc., “u-velOSity Microkernel,” (datasheet—
2pgs.) 2006.

Hattori. “Challenges for Low-Power Embedded SOC’s,” Interna-
tional Symposium on VLSI Design, Automation and Test, Apr. 25-27,
2007. 4pgs. [Accessed Feb. 16, 2011—IEEExplore] http://
ieeexplore.ieee.org/xpis/abs_ all.jsp? arnumber=4239406.

Journal of Technology & Science, “Express Logic, Inc.; Express
Logic and IAR Systems Team Up to Provide ThreadX RTOS Support
in TAR Embedded Workbench IDE for Freescale ColdFire,”
Accessed on Feb. 16, 2011 at http://proquest.umi.com.mutex.gmu.
edu/pqdweb?index=7 &did=1541305

Kakarountas et al. “Implementation of HSSec: A High-Speed Cryp-
tographic Co-Processor,” IEEE Conference On Emerging Technolo-
gies and Factory Automation, Sep. 25-28, 2007. p. 625-631.
[Accessed Feb. 16, 201 1—IEEExplore] http://iceexplore.icee.org/
xpls/abs__all jsp?amumber=4416827.

Ke et al. “Design of PC/104 Processor Module Based on ARM,”
International Conference on Electrical and Control Engineering, Jun.
25-27, 2010. p. 775-777. [Accessed Feb. 17, 2011—IEEExplore]
http://ieeexplore.icee.org/xpis/abs_ all.jsp?arnumber=5630566.

US 8,607,086 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Kinebuchi et al. “A Hardware Abstraction Layer for Integrating Real-
Time and General-Purpose with Minimal Kernel Modification,” Soft-
ware Technologies for Future Dependable Distributed Systems, Mar.
17, 2009. p. 112-116.[Accessed Feb. 16, 201 1—IEEExplore] http://
ieeexplore.ieee.org/xpls/abs_ all.jsp?arnumber=4804582.

Tabari, et al. “Neural Network Processor for a FPGA-based
Multiband Fluorometer Device,” International Workshop on Com-
puter Architecture for Machine Perception and Sensing, Sep. 2006. p.
198-202. [Accessed Feb. 16, 2011—IEEExplore] http://ieeexplore.
ieee.org/xpls/abs_ all jsp?amumber=4350381.

Wang et al. “Towards High-Performance Network Intrusion Preven-
tion System on Multi-core Network Services Processor,” 15th Inter-
national Conference on Parallel and Distributed Systems, Dec. 8-11,
2009. p. 220-227. [Accessed Feb. 16, 201 1—IEEExplore].

Wong, William, “16-Bit MCU Invades 8-Bit Territory with 4-by
4-mm Chip,” Electronic Design, Sep. 29, 2005. vol. 53, No. 21, p. 32.
[Accessed Feb. 16, 201 1—Academic Search Complete].

“Yoggie Pico Personal Security Appliance,” www.yoggie.com.
(archived on May 31, 2009) [Accessed Feb. 16,201 1—Archive.org].

“Yoggie Security Unveils Miniature Hardware Appliance,” www.
yoggie.com. (archived on May 31, 2009) [Accessed Feb. 16,2011—
Archive.org].

“Yoggie Unveils Miniature Internet Security Devices for Mac Com-
puters,” M2 Telecomworldwire,Oct. 14, 2008. [Accessed Feb. 18,
201 1—Academic Source Complete].

Quan Huang et al.: “Embedded firewall based on network processor”,
2005, IEEE, Proceedings of the Second International Conference on
Embedded Software and Systems (ICESS’05), 7 pages.

Tan et al.: “A simulation framework for energy-consumption analysis
of OS-driven embedded applications,” IEEE, vol. 22, No. 9, Sep.
2003.

International Search Report and Written Opinion mailed Dec. 30,
2010 in Patent Cooperation Treaty application No. PCT/US10/
55186, filed Nov. 2, 2010.

Benini et al.: “Finite-state machine partitioning for low power,” 1998,
IEEE.

Antoniou, S. “Networking Basics: TCP, UDP, TCP/IP and OSI
Model,” Oct. 29, 2007, <www.translingal.com/blog/networking-ba-
sics-tco=udp-tcpip-osi-models> (retrieved Jun. 4, 2013) 8 pages.

* cited by examiner

U.S. Patent

Dec. 10, 2013 Sheet 1 of 6 US 8,607,086 B2
100 P
Memory
110
T
|
O Protocol o ! Network 1
Request) Request | ! |
. Handling) I Interface
Receiver Processing | | |
Module i Module
Module 130 Module | 150 !
120 — 140 T
|
4

Processing Unit
160

FIG. 1

U.S. Patent

US 8,607,086 B2

Dec. 10, 2013 Sheet 2 of 6
200 ;)
210 APPLICATIONS
280 SOCKETS API
TCP UDP ICMP
EXTENSIONS EXTENSIONS EXTENSIONS
230 234 238
TCP STACK UDP STACK ICMP STACK
232 236 240
250 IP LAYER
Device Driver | Device Driver Device Driver CEci:frrglgr
260 262 264
270
220 HARDWARE

FIG. 2

U.S. Patent

Dec. 10,2013 Sheet 3 of 6

C START)
l

US 8,607,086 B2

BOOP

Receive an I/O request
310

Y

Determine the network protocol
320

I

Process the 1/O request according to the network
protocol
330

|
C END)

FIG. 3

U.S. Patent Dec. 10, 2013 Sheet 4 of 6 US 8,607,086 B2

4OOP

410
CPU | Master Control |
| Program |
I 430 I
" 420
(’)
CPU CPU CPU CPU
412 414 416 418

FIG. 4

U.S. Patent

Dec. 10,2013 Sheet 5 of 6
Computing Device

510

»

o]

o

c

Memory =)

©

L

920 5

£

£

[e]

(&)

Clock 540

530

FIG. 5

550

US 8,607,086 B2

SOOP

US 8,607,086 B2

Sheet 6 of 6

Dec. 10, 2013

U.S. Patent

059

SPUENS S[0NjNu $S3001g

A

AWoow

SNdD 91anmN

0v9
SPUEIS ojdnnuu S]E00y

ﬁ

029
SPUEIIS S|annud S1eiauan)

029 _

019
s)sonbal Of] sAIB00Y

810) 191Sel

US 8,607,086 B2

1
MASSIVELY MULTICORE PROCESSOR AND
OPERATING SYSTEM TO MANAGE
STRANDS IN HARDWARE

CROSS REFERENCES TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/224,938, filed on Sep. 2, 2011, entitled “Mas-
sively Multicore Processor and Operating System to Manage
Strands in Hardware,” which is incorporated by reference in
its entirety. This application is also related to U.S. patent
application Ser. No. 13/277,111, filed on Oct. 19, 2011,
entitled, ““TCP/IP Stack-Based Operating System,” which is a
continuation of U.S. patent application Ser. No. 12/938,290,
filed on Now. 2, 2010, entitled, “TCP/IP Stack-Based Oper-
ating System,” both of which are incorporated by reference in
their entirety.

TECHNICAL FIELD

The application generally relates to computing devices
having multiple processors and, more specifically, to a mul-
ticore processor and operating system based on a protocol
stack.

BACKGROUND

Computing devices such as desktop computers, laptop
computers, cell phones, smartphones, personal digital assis-
tants (PDA), and many other electronic devices are widely
deployed. The primary element of such computing devices is
a central processing unit (CPU), or a processor, which is
responsible for executing instructions of one or more com-
puter programs. The CPU executes each program instruction
in sequence to perform the basic arithmetical, logical, and
input/output operations of the computing device. Design and
implementation of such devices in general, and CPUs in
particular, may vary; however, their fundamental functional-
ities remain very similar.

Traditionally, in a computing device, the CPU is coupled to
a memory and an Input/Output (I/O) subsystem, directly or
through a bus, to perform the main functions of computing
devices such as inputting and outputting data, processing
data, and so forth. The memory may embed an operating
system (OS), computer programs, applications, and so forth.

Conventional operating systems are quite similar in archi-
tecture, in that each tends to have conventional file and
memory operations, storage and graphical user interface
operations, and so forth. Architectures of conventional oper-
ating systems include a layered design, device drivers, and
Application Programming Interfaces (APIs).

In conventional operating systems, a core kernel essen-
tially has master control over all the operations of the over-
lying software, components, device drivers, applications, and
so forth. Traditionally, operating systems implement ‘multi-
tasking’ through time slicing and sequential allocation of
computer resources to various threads and processes. A
thread generally runs within a process and shares resources,
e.g., memory, with other threads within the same process,
whereas a process generally runs ‘self-contained” within its
own right and completely independently of any other process.
In multi-tasking, when a computing device includes a single
processor, the operating system instructs the processor to
switch between different threads and implement them

20

25

30

35

40

45

50

55

60

65

2

sequentially. Switching generally happens frequently enough
that the user may perceive the threads (or tasks) as running
simultaneously.

Many conventional computing devices utilize multiproces-
sors, or multicore processors, which may truly allocate mul-
tiple threads or tasks to run at the same time on different cores.
However, conventional multicore processor architectures
involve a small number of cores (typically 2, 4, 6, or 8 cores)
due to the design limitations of traditional hardware and
traditional operating systems. In the case of a conventional
multicore processor, the computing device still must imple-
ment time slicing and switching between different threads on
each of its cores when performing several tasks involving
multithreading allocated through the cores. In other words,
even conventional multicore processors cannot implement
true multitasking.

Traditional processor architectures are also known to expe-
rience hanging, cycling, or crashing of the threads when
applications are poorly written or purposely malicious. In
many instances, a thread crash may bring the whole processor
down and result in time-division multiplexing of various
threads or processes.

Conventional processor designs use a fixed-frequency,
continuously running crystal as the timing mechanism for
clocking through microprocessor execution cycles. Thus, the
crystal and the processor may continue running even if noth-
ing is being accomplished in the computing device, uselessly
cycling around and waiting for a process to actually perform
an action. This timing paradigm results in wasted energy.
First, the crystal and processor transistors typically execute at
their maximum speed at all times, thereby consuming excess
power and generating excess heat. Secondly, it is inefficient to
continue running clock cycles if no substantive process is
actually running. However, these inefficiencies are unavoid-
able in the conventional operating system design.

Furthermore, conventional operating systems require vari-
ous modifications and enhancements each year, such as incor-
poration of new communications layers for Ethernet drivers,
Transmission Control Protocol/Internet Protocol (TCP/IP)
stacks, Web browsers, and the like. Generally, these new
layers are added on top of the conventional operating system,
thereby increasing complexity, decreasing performance, and
often leading to software crashes and security flaws.

SUMMARY

This summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This summary is not intended to
identify key features or essential features of the claimed sub-
jectmatter, nor is it intended to be used as an aid in determin-
ing the scope of the claimed subject matter.

In accordance with various embodiments disclosed herein,
a computing device having multiple CPUs interconnected to
each other is provided. Each CPU embeds an operating sys-
tem of an entirely new architecture. This operating system
may be based fundamentally around an Internet stack, for
example, the TCP/IP stack (instead of including a TCP/IP
layer as in a conventional core operating system) and may
utilize a conventional interface or similar extensions of the
standard Berkeley Sockets (or WinSock) APIs.

In accordance with various embodiments disclosed herein,
a computing apparatus is provided. The computing apparatus
may comprise a set of interconnected central processing
units. Each CPU may embed an operating system (OS) com-
prising an operating system kernel, the operating system ker-
nel being a state machine and comprising a protocol stack. At

US 8,607,086 B2

3

least one of the CPUs may further embed executable instruc-
tions for allocating multiple strands to one or more other
CPUs of the set of interconnected CPUs. It will be understood
that a strand, as used herein, is a hardware oriented process
and is not necessarily similar to a conventional unit of pro-
cessing (i.e., a thread) that can be scheduled by an operating
system. The Internet stack is a set of communication proto-
cols used for the Internet and other similar networks. In one
example embodiment, the Internet stack may comprise a
TCP/IP stack such that the OS kernel is a TCP/IP stack state
machine with proprietary extensions that can be used to
change or access internals of the TCP/IP stack state machine.
In another example embodiment, the Internet stack may com-
prise a User Datagram Protocol/Internet Protocol (UDP/IP)
stack such that the OS kernel is a UDP/IP stack state machine
with proprietary extensions that can be used to change or
access internals of the UDP/IP stack state machine. The CPU
may comprise a processing unit, a memory and an I/O inter-
face. Executable instructions for the operating system may be
stored within one or more types of storage media, such as for
example, Read-Only Memory (ROM), Programmable Read-
Only Memory (PROM), Field Programmable Read-Only
Memory (FPROM), One-Time Programmable Read-Only
Memory (OTPROM), One-Time Programmable Non-Vola-
tile Memory (OTP NVM), Erasable Programmable Read-
Only Memory (EPROM), and Electrically Erasable Program-
mable Read-Only Memory (EEPROM or Flash ROM).

The computing apparatus may further comprise at least one
asynchronous clock to serve as an internal clock for the oper-
ating system. The asynchronous clock may be configurable to
automatically stop when clock cycles are no longer needed. A
time reference for the operating system kernel may be based,
for example, on a Network Time Protocol (NTP), Simple
Network Time Protocol (SNTP), or other suitable time pro-
tocol from a remote time server. In an example, the operating
system may utilize a Sockets style API of sockets and ports on
1P addresses for handling 1/O requests. The set of CPUs may
be interconnected through a bus. Executable instructions for
the operating system may be executed through a Sockets API.
The at least one CPU that embeds executable instructions for
allocating multiple strands may further comprise instructions
for generating multiple strands.

According to another embodiment, a method for operating
a computing apparatus is provided. The method may com-
prise receiving /O requests, generating multiple strands
according to the /O requests, allocating the multiple strands
to one or more CPUs of a set of CPUs, and processing the
multiple strands. Each CPU may embed an operating system
(OS) having a kernel comprising a protocol stack.

According to various embodiments, the I/O requests may
be received by a CPU, which embeds executable instructions
for allocating multiple strands through multiple CPUs. Allo-
cating multiple strands may comprise communicating data
via a network interface.

In one embodiment, the method may further comprise
assembling results of multiple strands processing. Executable
instructions for the operating system may be stored in a
memory and executed through a Sockets API.

According to some embodiments, a non-transitory com-
puter-readable storage medium is provided having embodied
instructions thereon, instructions executable by a processor in
a computing device to perform a method. The method may
comprise receiving an input/output (I/O) request, generating
one or more strands according to the 1/O request, allocating
the one or more strands and/or processes to one or more
central processing units (CPUs) of a set of CPUs, wherein
each CPU of the set embeds an operating system (OS) having

20

25

30

35

40

45

50

55

60

65

4

a kernel comprising a protocol stack, and processing the one
or more strands and/or processes.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are illustrated by way of example and not
limitation in the figures of the accompanying drawings, in
which like references indicate similar elements.

FIG. 1 is a block diagram of a CPU, according to various
exemplary embodiments.

FIG. 2 illustrates an exemplary architecture of an Internet
stack state machine-based system, according to various
embodiments.

FIG. 3 is a flow chart illustrating a method for a CPU
embedding a protocol stack-based operating system, accord-
ing to an exemplary embodiment.

FIG. 4 is a block scheme of a computing device, according
to various exemplary embodiments.

FIG. 5 is a computing environment, according to various
exemplary embodiments.

FIG. 6 is a flow chart of a method for processing 1/O
requests by a computing device comprising multiple CPUs
with embedded Internet stack-based operating systems,
according to an exemplary embodiment.

DETAILED DESCRIPTION

Various aspects of the subject matter disclosed herein are
now described with reference to the drawings, wherein like
reference numerals are used to refer to like elements through-
out. In the following description, for purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding of one or more aspects. It may be
evident, however, that such aspects may be practiced without
these specific details. In other instances, well-known struc-
tures and devices are shown in block diagram form in order to
facilitate describing one or more aspects.

Various embodiments disclosed herein relate to computing
devices comprising a set of interconnected CPUs. The num-
ber of the CPUs is not limited, and may be more than 100, or
even more than 10,000, depending on specific application of
the computing devices. The CPUs may be interconnected
(e.g., through one or more buses) so that multiple strands,
processes, and tasks can be allocated among a few or even all
CPUs, thereby implementing parallelism or true multi-task-
ing. According to some embodiments, each of some or all of
the CPUs is allocated a respective strand.

Asused herein, the term “central processing unit” relates to
aprocessor, a microprocessor, a controller, a microcontroller,
a chip, or other processing device that carries out arithmetic
and logic instructions of an operating system, a computer
program, an application, or the like. According to various
embodiments disclosed herein, the CPU comprises a process-
ing unit (typically including an arithmetic logic unit and a
control unit) and a memory (also known as “registers,” or
Read Only Memory (ROM)). In some embodiments, the CPU
may further comprise an I/O Subsystem (Interface) to allow
data transfer between the CPU and any other devices such as
another CPU or 1/O devices such as a keyboard, mouse,
printer, monitor, network controller, and so forth.

The CPU memory may store an operating system based
entirely on a protocol stack. A protocol stack, as used herein,
is a particular software implementation of a computer net-
working protocol suite. The protocol stack may be a TCP/IP
stack, UDP/IP stack, Internet Control Message Protocol
(ICMP) stack, combinations thereof, or other protocols. The

US 8,607,086 B2

5

operating system embedded in the CPU is fundamentally a
state machine. The kernel of the operating system is funda-
mentally a protocol stack.

Such an operating system is inherently Internet-oriented
and all Internet type functionality is natural and inherent in its
protocol stack-based processor design and implementation.
In addition, such an operating system may operate within
small hardware, be run by very compact and efficient soft-
ware, possess minimal clock cycles for execution, have a
natural Internet connectivity model and ultra low power con-
sumption.

FIG. 1 illustrates a block diagram of an exemplary CPU
100. The CPU 100 may be a processor, a microprocessor, a
chip, or the like. The CPU 100 may include a memory 110,
which may embed an operating system and, optionally, fur-
ther software applications. The operating system may com-
prise a kernel to provide communications between software
and hardware components/modules. The kernel may be a
state machine with extensions and may comprise an Internet
stack. The Internet stack may include a set of communication
protocols used for the Internet and similar networks. For
example, the Internet stack may include a TCP/IP stack so
that the OS kernel is a TCP/IP stack state machine. According
to another example, the Internet stack includes a UDP/IP
stack such that the OS kernel is a UDP/IP stack state machine.
According to yet another example, the Internet stack includes
a ICMP stack such that the OS kernel is a ICMP stack state
machine.

The memory 110 may store one or more modules. Exem-
plary modules, which may be stored in the memory 110,
include an I/O request receiver module 120, a protocol han-
dling module 130, an I/O request processing module 140, and
an optional network interface module 150. It will be appreci-
ated by one skilled in the art that the technology described
herein encompasses those embodiments where one or more
of the modules may be combined with each other or not
included in the memory 110 at all.

The CPU 100 may further include a processing unit 160 for
executing various instructions and running modules stored in
the memory 110. The processing unit 160 may comprise an
arithmetic logic to carry out mathematical functions, and a
control unit to regulate data flow through the processing unit
160 and the CPU 100. Those skilled in the art would under-
stand that any suitable architecture of the processing unit 160
is applicable.

A module should be generally understood as one or more
applications (routines) that perform various system-level
functions and may be dynamically loaded and unloaded by
hardware and device drivers as required. The modular soft-
ware components described herein may also be integrated as
part of an application specific component.

According to various embodiments, the modules may each
include executable instructions for the operating system
embedded into CPU 100 and may be executed through a
Sockets API.

The I/O request receiver module 120 may be configured to
receive [/O requests. The requests may be from an application
residing in an application layer of a computing device (as
described in further detail with respect to FIG. 2).

The protocol handling module 130 may be configured to
handle a specific protocol for the protocol stack state machine
implementation. For example, the protocol may be a TCP/IP
stack such that the operating system is a TCP/IP stack state
machine. In some embodiments, the protocol stack may
include a different protocol stack (e.g., a UDP/IP stack or
ICMP stack which may beused in addition to or in place of the
TCP/IP stack).

20

25

30

35

40

45

50

55

60

65

6

The operating system may utilize Sockets style API of
sockets and ports on IP addresses for handling /O requests.
The I/O request processing module 140 may be configured to
process the 1/O requests from an application according to the
network protocol using the operating system.

The optional network interface module 150 may be
included and is configured to provide an interface between the
protocol stack state machine and a network interface. The
corresponding network interface may be a hardware unit or a
“soft” Ethernet controller.

The CPU 100 may also comprise a clock. The CPU 100
may require a clock to drive the state transitions as the CPU
100, for instance, reads and decodes opcodes. Conventionally
this is done by some external oscillator circuitry, typically
driven by a fixed-frequency crystal. However, clocking may
also be done by more than one crystal, e.g. a high frequency
crystal (e.g., 50 MHz) one for the main CPU core, and other
(lower frequency) crystals for other uses, e.g., programmable
timers, watchdog timers etc. Also, a system comprising for
instance a Universal Asynchronous Receiver/Transmitter
(UART) and a Network Interface Controller (NIC) also typi-
cally require clock inputs of some sort. For instance, a UART
may need areliable clock source all the way from perhaps 300
baud up to 921,600 baud. A NIC running 100 MBit Ethernet
would typically need a clock source of 50 MHz or 25 MHz.

Typically, a computer system needs to keep track of time,
and can do so using internal counters to keep track of its
internal clocks. However, in the case of an Internet-connected
device, such as in various embodiments described herein, the
device is connected to the Internet and thus has readily avail-
able external time sources, for instance from Network Time
Protocol (NTP), Simple Network Time Protocol (SNTP), or
other suitable time protocols from a remote server (i.e., time
protocol servers). For CPU 100, the processing unit 160 that
may be included may utilize a time reference using the NTP,
SNTP, or other suitable time protocol from a remote time
server. Alternatively, the Precision Time Protocol (PTP) can
be used for synchronization within a Local Area Network
(LAN).

According to some example embodiments, an asynchro-
nous (variable) clock may serve as an internal clock for the
operating system for the CPU 100. The asynchronous clock
may be configurable to automatically stop when clock cycles
are no longer needed. The asynchronous system clock may be
restarted by a wake-up “daemon” signal from the SNMP
daemon (for example, an incoming data packet).

Furthermore, a combination of the above-mentioned
clocking approaches can be used. For example, in the initial
phases, the internal clock may be used to trigger the CPU 100.
The internal clock may be utilized until the CPU 100 is fully
active, at which time most or all of the clock requirements
may be transitioned to external time protocols, e.g., using
Internet time servers using NTP, SNTP, or other suitable time
protocols from a remote time server, or using PTP and SNMP
to take over the control of the clocking operations. This would
mean that internal clock circuitry for CPU 100 could be
turned off, thus conserving power.

Executable instructions for the CPU 100 may be optimized
to be more efficient than conventional CPUs so that much
lower clock rates are used. A self-adjusting cycle rate may be
provided depending on the load and function to be performed.
In addition, self-learning or predetermined algorithms for
expected scenarios may be utilized to put the CPU 100 into a
‘sleep’ or ‘doze’ mode. An expected external event may cause
the CPU 100 to exit the doze mode, resume full speed opera-
tion to execute necessary operations and handle the external
event, and return back to doze. In a doze or a deep sleep mode,

US 8,607,086 B2

7

the CPU register contents may be read and stored in special
registers with long deep-sleep data maintaining capabilities.
Such clock saving measures may yield substantial power
savings.

FIG. 2 illustrates an exemplary architecture 200 for a TCP/
IP stack state machine-based system, according to various
embodiments. The operating system kernel may include vari-
ous components operating between applications 210 and
hardware 220. The kernel may include a TCP stack 232, UDP
stack 236, and/or ICMP stack 240, around which the operat-
ing environment may be built. The kernel may include TCP
extensions 230, UDP extensions 234, ICMP extensions 238,
which together with the respective TCP stack 232, the UDP
stack 236, and the ICMP stack 240 are shown above an IP
layer 250. The kernel may include one or more device drivers
260, 262, and 264, as well as an Ethernet controller 270.

The API for all operations of the operating system may
include the conventional Berkeley Sockets style API of sock-
ets and ports on IP addresses. The Berkeley Sockets may
specify the data structures and function calls that interact with
the network subsystem of the operating system. The kernel
may handle the normal Sockets APIs. The Sockets API 280
may also include some optimized APIs.

Any non-conventional functions (i.e., outside the normal
functions used to communicate over the Internet) may be
handled in a similar manner (e.g., by opening sockets and
binding to ports). Thus, accessing of local input and output
(e.g., keyboards, mice, and display screens) may be accom-
plished through socket/port operations. Consequently, it is
quite transparent as to whether a device is local or remote. A
keyboard could be ata local host at, for example, 127.0.0.1, or
remote at another IP address. Though this transparency may
be an aspect of other operating systems, it may not be inherent
in the operating system design from the outset. Accordingly,
the size of a basic kernel may be very small in a minimal
configuration, perhaps as small as a few hundred bytes. It will
be understood that the Windows Sockets technology above is
mentioned merely for the purpose of providing an example.
In contrast to the present technology, in the Windows Sockets
technology communications with a display device over the
Internet may be cumbersome.

FIG. 3 is a flow chart illustrating an exemplary method 300
for a CPU embedding a protocol stack-based operating sys-
tem. The method 300 may commence at operation 310 with
receiving an I/O request. The request may be from an appli-
cation residing in an applications layer 210 of a computing
device. In operation 320, the network protocol may be deter-
mined. According to some embodiments, the protocol is TCP/
IP, so that the operating system is a TCP/IP stack state
machine. In some other embodiments, the protocol is UDP/IP.
UDRP is an unreliable connectionless protocol sitting on top of
1P, and TCP is a connection-oriented reliable protocol. The
protocol may be a hybrid of TCP and UDP, wherein a data
connection stream includes a mixture of UDP and TCP pack-
ets. UDP has less overhead and is suitable for lower-impor-
tance information, whereas TCP has a higher overhead but
essentially guarantees delivery. For instance, a stream of data
comprising non-essential information (such as low-impor-
tance data) mixed with critical data could better be transmit-
ted over such a hybrid link. This hybrid protocol may be
determined in operation 320.

In operation 330, the I/O request may be processed accord-
ing to the network protocol. The processing may be per-
formed by the state machine that is the operating system (e.g.,
a TCP/IP stack state machine operating system). The operat-
ing system may utilize a Sockets style API of sockets and
ports on IP addresses for handling I/O requests. The conven-

—

0

20

25

30

35

40

45

50

55

60

65

8

tional Berkeley Sockets style API of sockets and ports on IP
addresses may be used. The Berkeley Sockets may specify the
data structures and function calls that interact with the net-
work subsystem of the operating system.

FIG. 4 is a block scheme of a computing device 400,
according to an exemplary embodiment. The computing
device 400 may comprise five CPUs 410, 412, 414, 416, and
418. Despite the fact that five CPUs are shown, it will be
appreciated by one skilled in the art that any number of CPUs
may be used in the computing device 400. Some embodi-
ments may include up to 10,000 CPUs or even more.

The CPUs 410, 412, 414, 416, and 418 may all be coupled
to a bus line 420 so that they may communicate data amongst
each other. According to various embodiments disclosed
herein, each CPU embeds an operating system based on a
protocol stack. The protocol stack may be a TCP/IP protocol
stack, UDP/IP stack, combinations thereof (i.e., hybrid
stack), or other appropriate protocols. One particular example
of the CPU embedding a TCP/IP stack-based operating sys-
tem is described with reference to FIG. 1.

Although not shown in FIG. 4, the CPUs 410, 412, 414,
416, and 418 may each include a memory storing an operating
system and/or any further executable instructions and/or data.
The memory can be implemented within the CPU or exter-
nally. In one example, all CPUs 410, 412, 414, 416, and 418
may share a single memory coupled to the bus 420. As used
herein, the term “memory” refers to any type of long term,
short term, volatile, nonvolatile, or other storage devices and
is not limited to any particular type of memory or number of
memories, or type of media upon which memory is stored.

The CPUs 410, 412, 414, 416, and 418 in the example in
FIG. 4 may further comprise an I/O Interface (not shown)
implemented as software and/or hardware. One particular
example of software implementation of the I/O Interface is
shown as optional Network Interface Module 150 in FIG. 1.
Alternatively, a hardware implementation may comprise an
1/O controller, a Network Interface Controller (NIC) as an
Ethernet controller, or the like. It will be apparent to those
skilled in the art that the /O interface may support any com-
munication standards and provide communications over a
serial connection, parallel connection, firewire connection,
Ethernet connection, and so forth.

Each of the CPUs may further comprise a clock (not
shown), which can be implemented within each CPU or exter-
nally. According to various embodiments, a single clock may
be shared by all CPUs.

One or more of the CPUs may embed a Master Control
Program (MCP) 430. According to the example in FIG. 4, the
CPU 410 embeds the MCP 430. The MCP 430 is an applica-
tion or a routine for managing operations of the remaining
CPUs 412, 414, 416, and 418 and, therefore, the CPU 410
may be considered a “Master Core.”” More specifically, the
MCP 430 may be configured to receive 1/O requests from
outside devices, generate multiple strands (processes, tasks)
according to the I/O requests, and allocate these strands (pro-
cesses) to the other CPUs 412, 414, 416, and 418 so that the
overall computational load is selectively distributed among
the CPUs 412, 414, 416, and 418. However, in some embodi-
ments, strands may be allocated to some of the CPUs 412,
414, 416, and 418, or to just one CPU. According to some
embodiments, each of a number of CPUs (i.e., one, some, or
all of the CPUs) is each allocated a respective strand. After
execution of all strands and/or processes allocated to different
CPUs, the results of the computations may be assembled in
the Master Core for further outputting. Alternatively, the
CPUs 412, 414, 416, and 418 may deliver results directly to
corresponding external devices. According to some embodi-

US 8,607,086 B2

9

ments, the computing device 400 may comprise several Mas-
ter Cores for processing different types of 1/O requests. In yet
another embodiment, one Master Core may process all
incoming 1/O requests, while other Master Cores may be
utilized for assembling the output of multiple CPUs, and
transmitting of the assembled output results to corresponding
outside devices. Those who are skilled in the art would readily
understand that any possible number of Master Cores is pos-
sible, and each Master Core may implement the same or
different functions.

According to various exemplary embodiments, whenever a
strand or process is ‘created’ (e.g., by a typical ‘C’ “CreateTh-
read(. . .) function call), the MCP physically allocates a
hardware core stack to the strand (or process). An allocated
core stack/strand combination may also be referred to as a
“core strand”. The cores (or core strands) may form a massive
array in which core strands may be wired as a block to share
resources (e.g., memory), or allowed to share the resources
over their interconnects. Cores in the (massive) array of cores
may be connected to each other, e.g., interconnected by a
web-like structure. Cores may be allocated processes in some
embodiments, i.e., cores which are processes or “process
cores”. Such exemplary process cores are naturally isolated
from other process cores since processes run independently
of other processes, each process containing their own
resources, in contrast to strands where resources may be
shared therebetween.

The computing device 400 allows only a certain number of
CPUs to operate while the remaining CPUs, not involved in
the processing, are turned off. For example, the computing
device 400 may comprise 1,000 CPUs and a single Master
Core. In response to the /O request, the Master Core may
generate 600 strands (variously within a number of processes)
and allocate them to 600 CPUs. The remaining 400 CPUs
may be turned off to conserve power. If another 100 strands
later become needed, 100 of the 400 CPUs may be turned on
in response to the allocating of the 100 strands to them so that
the total number of the CPUs executing instructions becomes
700. As clearly shown in this example, the overall power
consumption is reduced compared to the traditional system
where all processors run all the time, even if there is no
process or strand to execute.

The computing device 400 may facilitate greater stability
of operations when compared to conventional multicore pro-
cessors. When one of the strands crashes, for example, due to
a poorly written routine or for some other reason, only the
CPU running the strand is affected, while other CPUs remain
unaffected. This is in contrast to conventional systems where
the entire multicore processor may become affected by a
single strand crash.

FIG. 5 illustrates an exemplary embodiment of a comput-
ing environment 500. The computing environment 500 may
comprise a computing device 510 (which is described in
greater detail with reference to FIG. 4), a memory 520, aclock
530, and communication ports 540, all of which may be
coupled to a bus 550.

The memory 520 may include any memory configured to
store and retrieve data. Some examples of the memory 520
include storage devices, such as a hard disk, magnetic tape,
any other magnetic medium, a CD-ROM disk, digital video
disk (DVD), any other optical medium, any other physical
medium with patterns of marks or holes, a RAM, a ROM, a
PROM, an EPROM, an EEPROM, a FLASHEPROM,
OTPROM, OTP NVM, Flash ROM or any other memory chip
or cartridge, or any other medium from which a computer can
read instructions. The memory 520 may comprise a data
structure configured to hold and organize data. The memory

20

25

30

35

40

45

50

55

60

65

10

520 may comprise executable instructions of the operating
system and/or other routines and applications. The memory
520 may also comprise a MCP, as described above with
reference to FIG. 4.

The clock 530 may serve as an asynchronous clock for the
operating system for one or more CPUs of the computing
device 510. The asynchronous clock may be configured to
automatically stop when clock cycles are not needed.

Communication ports 540 represent a connection interface
that allows asynchronous transmission of data between the
computing environment 500 and any edge devices such as a
keyboard, mouse, monitor, printer, CD-ROM drive, network
controller, and so forth.

The computing environment 500 may be implemented as a
desktop computer, a laptop computer, a mobile telephone, a
smartphone, a PDA, and many other consumer electronic
devices.

FIG. 6 is a flow chart of an exemplary method 600 for
processing I/O requests by a computing device comprising
multiple CPUs, with the CPUs each embedding a protocol
stack-based operating systems.

The method may commence in operation 610, when a CPU
embedding a MCP (i.e., a Master Core) receives an 1/O
request. In optional operation 620, the network protocol may
be determined. According to various embodiments, the pro-
tocol is TCP/IP, UDP/IP, a combination thereof, or the like. In
operation 630, the Master Core may generate multiple strands
(e.g., within processes) according to the I/O requests and the
determined (optional in operation 620) network protocol. In
operation 640, the Master Core may schedule and allocate the
multiple strands among one or more CPUs 412,414, 416,418
(see FIG. 4) and other CPUs of the computing device. The
allocation of multiple strands may include communicating
data via a network interface (e.g., via a bus using I/O inter-
faces of the CPUs).

In operation 650, the strands (or alternatively the processes
which contain strands) may be processed in the one or more
CPUs. According to various embodiments, the processing at
each CPU is performed by the state machine that is the oper-
ating system, e.g., a TCP/IP stack state machine operating
system. The operating system may utilize Sockets style API
of sockets and ports on IP addresses for handling these
strands.

In optional operation 660, processing results (e.g., arith-
metical or logic results) from multiple CPUs may be
assembled by the Master Core for further outputting. Accord-
ing to another example, assembling may be performed within
a different CPU, or, alternatively, processing results may be
directly transmitted to a corresponding edge device.

The following provides an overview of the functionalities
facilitated by protocol stack-based multiple processors,
which can be used in different computing devices according
to various embodiments disclosed herein.

A conventional operating system may manage internal
tasks and external programs in a dictatorial manner, wherein
the appearance of multitasking is achieved through rapid
allocation of time slices among multiple strands and pro-
cesses. Such a system may be flexible and of a general pur-
pose. However, applications and unknown driver components
have little or no control over their scheduling in such a system.

In contrast to a conventional operating system, the operat-
ing system according to the various embodiments disclosed
herein is essentially a state machine. This results in the whole
environment being inherently cooperative and friendly to the
operating system as a state machine model. All systems and
application components are built together in an open and

US 8,607,086 B2

11

symbiotic relationship. Only components actually required in
a target system are built into the environment.

In a conventional operating system, the kernel and other
systems components include all the normal functions of file
and memory management, timers, input and output, TCP/IP,
and the like. There are numerous strands and processes going
on, such as kernel executive cycles around all the running
processes, updating clocks, checking communication ports,
updating displays, checking on Ethernet traffic, and so forth.
As such, the conventional operating system provides a highly
sophisticated and flexible system, but with the downside of a
tremendous number of activities (and hence clock cycles and,
therefore, energy) going on all the time.

In contrast, an implementation according to various
embodiments disclosed herein may include only the required
components. As a result, execution times and code sizes may
be optimized, resulting in fewer energy cycles. Such comput-
ing device may have a number of state machines handling the
operations at a lower level and forwarding data packets up
through the TCP/IP stack. When no tasks need to be per-
formed, the state machines are idle. Therefore, the protocol
stack-based CPUs according to various embodiments dis-
closed herein eliminate unnecessary internal clock cycles
through the use of intelligent tasking, in contrast to conven-
tional multi-tasking.

The ultra-low power aspect of the computing device
according to the embodiments disclosed herein may provide
greatly improved battery life for various devices. Boot up
time for devices may be greatly reduced by executing instruc-
tions from the ROM, saving general state information in
battery-backed SRAM, and saving crucial microprocessor
register setting and other state information in special registers
in custom application-specific integrated circuits (ASICs),
for example.

A full 1P stack typically includes an application layer,
transport layer, Internet layer, and link layer. The basic oper-
ating system for the computing device may not normally have
all the components of a full IP stack. A basic kernel may have,
for example, just HI'TP on top of TCP on top of IP on top of
Ethernet. Alternatively, the kernel may be built with SNMP
on UDP on IP on Ethernet. Those who are skilled in the art
would readily understand that various possible implementa-
tions are possible.

The computing device may also attempt to identify which
sub-processes in a larger process need to be executed sequen-
tially and which sub-processes may be executable in parallel.
The computing device may provide a model of a set of simple
state machines. In complex systems, a State Machine Man-
ager (SMM) may be provided to regulate and control the run
flow. In operation, applications register priority and execution
parameter requests with the SMM, which in turn handles
them accordingly in a fair manner.

Conventionally, multicore processors are designed first,
and thereafter an operating system is designed to run on such
processors. As a result, the operating system design is limited
by compromises dictated by the multicore processor design.
The applications are then designed to run on the operating
system. The design of the applications is limited by all the
limitations dictated by the particular operating system design.

In contrast to this conventional design process, an operat-
ing system may be designed first according to the embodi-
ments described herein. Any unnecessary aspects may be
removed for the design. A computing device having multiple
CPUs may then be designed. The design process may be
iterated to make still further reductions down to the essential
components.

20

25

30

35

40

45

50

55

60

65

12

According to various embodiments, the operating system
code executes within a ROM. While saving register contents
during a deep sleep, execution within the ROM and as a state
machine provide an “instant-on” capability where it may take
just milliseconds for the system to resume execution. A RAM
memory may be used for only truly read-write data that
requires it, while the execute-only code may be stored in the
ROM. The slower access times of ROM devices versus RAM
devices may not cause an issue, because the instruction cycle
times for the system are generally slow, albeit for a reduced
number of cycles.

The terms “computer-readable storage medium” and
“computer-readable storage media” as used herein refer to
any medium or media that participate in providing instruc-
tions to a CPU for execution. Such media can take many
forms, including, but not limited to, non-volatile media, vola-
tile media and transmission media. Non-volatile media
include, for example, optical or magnetic disks, such as a
fixed disk. Volatile media include dynamic memory, such as
system RAM. Transmission media include coaxial cables,
copper wire, and fiber optics, among others, including the
wires that comprise one embodiment of a bus. Common
forms of computer-readable media include, for example, a
floppy disk, a flexible disk, a hard disk, magnetic tape, any
other magnetic medium, a CD-ROM disk, DVD, any other
optical medium, any other physical medium with patterns of
marks or holes, a RAM, a PROM, an EPROM, an EEPROM,
a FLASHEPROM, any other memory chip or cartridge, or
any other medium from which a computer can read.

Various forms of computer-readable media may be
involved in carrying one or more sequences of one or more
instructions to a CPU for execution. A bus may carry the data
to system ROM (or RAM), from which a CPU retrieves and
executes the instructions. The instructions received by system
ROM (or RAM) may optionally be stored on a fixed disk
either before or after execution by a CPU.

The above description is illustrative and not restrictive.
Many variations of the embodiments will become apparent to
those of skill in the art upon review of this disclosure. The
scope of the subject matter should, therefore, be determined
not with reference to the above description, but instead should
be determined with reference to the appended claims along
with their full scope of equivalents.

While the present embodiments have been described in
connection with a series of embodiments, these descriptions
are not intended to limit the scope of the subject matter to the
particular forms set forth herein. It will be further understood
that the methods are not necessarily limited to the discrete
steps or the order of the steps described. To the contrary, the
present descriptions are intended to cover such alternatives,
modifications, and equivalents as may be included within the
spirit and scope of the subject matter as disclosed herein and
defined by the appended claims and otherwise appreciated by
one of ordinary skill in the art.

What is claimed is:

1. A computing apparatus, comprising:

a set of interconnected central processing units (CPUs),
each of the CPUs embedding an operating system (OS),
the OS comprising an operating system kernel, the oper-
ating system kernel being a state machine based on a
network protocol stack; and

at least one of the CPUs further embedding executable
instructions for allocating multiple strands to one or
more other CPUs of the set of interconnected CPUs.

2. The apparatus of claim 1, wherein the one or more other

CPUs includes all other CPUs of the set such that the at least

US 8,607,086 B2

13

one of the CPUs embeds executable instructions for allocat-
ing multiple strands to all other CPUs of the set of intercon-
nected CPUs.

3. The apparatus of claim 1, wherein the one or more other
CPUs includes less than all of the other CPUs of the set, any
of'the CPUs not allocated strands being turned off to conserve
power.

4. The apparatus of claim 1, wherein the one or more other
CPUs includes less than all of the other CPUs of the set, and
wherein any of the CPUs not allocated strands are placed in a
sleep mode to conserve power.

5. The apparatus of claim 1, wherein the network protocol
stack comprises a User Datagram Protocol/Internet Protocol
(UDP/IP) stack such that the OS is a UDP/IP stack state
machine or Internet Control Message Protocol (ICMP) stack
such that the OS is ICMP stack.

6. The apparatus of claim 1, wherein each of the CPUs
comprises a processing unit, a memory and an Input/Output
(I/O) interface.

7. The apparatus of claim 6, wherein the memory includes
one or more of the following memory types: a Read-Only
Memory (ROM), Programmable Read-Only Memory
(PROM), Field Programmable Read-Only Memory
(FPROM), One-Time Programmable Read-Only Memory
(OTPROM), One-Time Programmable Non-Volatile
Memory (OTPNVM), Erasable Programmable Read-Only
Memory (EPROM), and Electrically Erasable Programmable
Read-Only Memory (EEPROM or Flash ROM), the execut-
able instructions for the OS being stored within the one or
more memory types wherein all operations for the OS are
executed using a Sockets applications programming interface
(APD).

8. The apparatus of claim 1, further comprising at least one
asynchronous clock to serve as an internal clock for the OS.

9. The apparatus of claim 8, wherein the asynchronous
clock is configurable to automatically stop when clock cycles
are no longer needed.

10. The apparatus of claim 1, wherein a time reference for
the OS kernel is based on a Network Time Protocol (NTP),
Simple Network Time Protocol (SNTP), or a Precision Time
Protocol (PTP).

11. The apparatus of claim 1, wherein the set of intercon-
nected CPUs are interconnected through a bus.

12. The apparatus of claim 1, wherein executable instruc-
tions for the operating system are executed through a Sockets
applications programming interface (API).

13. The apparatus of claim 1, wherein the OS utilizes a
Sockets style API of sockets and ports on Internet Protocol
(IP) addresses for handling 1/O requests.

14. The apparatus of claim 1, wherein the at least one CPU
embedding executable instructions for allocating multiple
strands further comprises instructions for generating multiple
strands.

15. The apparatus of claim 1, where the set of intercon-
nected CPUs comprises 1000 interconnected CPUs.

20

25

30

35

40

45

50

14

16. A method, comprising:

receiving an input/output (I/O) request;

generating one or more strands according to the /O

request;

allocating the one or more strands to one or more central

processing units (CPUs) of a set of CPUs, wherein each

CPU of the set embeds an operating system (OS) having

a kernel based on a network protocol stack; and
processing the one or more strands.

17. The method of claim 16, wherein any of the CPUs not
allocated at least one of the strands is turned off to conserve
power.

18. The method of claim 16, wherein the network protocol
stack comprises a Transmission Control Protocol/Internet
Protocol (TCP/IP) stack such that the OS is a TCP/IP stack
state machine.

19. The method of claim 16, wherein the network protocol
stack comprises a User Datagram Protocol/Internet Protocol
(UDP/IP) stack such that the OS is a UDP/IP stack state
machine or Internet Control Message Protocol (ICMP) stack
such that the OS is ICMP stack.

20. The method of claim 16, wherein at least one of the
CPUs of the set of CPUs receives 1/O requests, the at least one
CPU embedding executable instructions for allocating the
multiple strands to a number of the other CPUs of the set of
CPUs.

21. The method of claim 16, wherein allocating comprises
communicating data via a network interface.

22. The method of claim 16, further comprising assem-
bling results of the processing.

23. The method of claim 16, wherein executable instruc-
tions for the operating system are stored in one or more of the
following memory types: Read-Only Memory (ROM), Pro-
grammable Read-Only Memory (PROM), Field Program-
mable Read-Only Memory (FPROM), One-Time Program-
mable Read-Only Memory (OTPROM), One-Time
Programmable Non-Volatile Memory (OTP NVM), Erasable
Programmable Read-Only Memory (EPROM), and Electri-
cally Erasable Programmable Read-Only Memory (EE-
PROM or Flash ROM), wherein all operations for the OS are
executed using a Sockets applications programming interface
(APD).

24. A non-transitory computer-readable storage medium
having embodied instructions thereon, instructions execut-
able by a processor in a computing device to perform a
method, the method comprising:

receiving an input/output (I/O) request;

generating one or more strands according to the /O

request;

allocating the one or more strands to one or more central

processing units (CPUs) of a set of CPUs, wherein each
CPU of the set embeds an operating system (OS), the OS
comprising a kernel that is a state machine based on a
network protocol stack; and

processing the one or more strands.

#* #* #* #* #*

