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1. 

MASSIVELY MULTICORE PROCESSOR AND 
OPERATING SYSTEM TO MANAGE 

STRANDS IN HARDWARE 

CROSS REFERENCES TO RELATED 
APPLICATIONS 

This application is a continuation of U.S. patent applica 
tion Ser. No. 13/224,938, filedon Sep. 2, 2011, entitled “Mas 
sively Multicore Processor and Operating System to Manage 
Strands in Hardware.” which is incorporated by reference in 
its entirety. This application is also related to U.S. patent 
application Ser. No. 13/277,111, filed on Oct. 19, 2011, 
entitled, “TCP/IP Stack-Based Operating System,” which is a 
continuation of U.S. patent application Ser. No. 12/938,290, 
filed on Nov. 2, 2010, entitled, “TCP/IP Stack-Based Oper 
ating System, both of which are incorporated by reference in 
their entirety. 

TECHNICAL FIELD 

The application generally relates to computing devices 
having multiple processors and, more specifically, to a mul 
ticore processor and operating system based on a protocol 
stack. 

BACKGROUND 

Computing devices Such as desktop computers, laptop 
computers, cell phones, Smartphones, personal digital assis 
tants (PDA), and many other electronic devices are widely 
deployed. The primary element of such computing devices is 
a central processing unit (CPU), or a processor, which is 
responsible for executing instructions of one or more com 
puter programs. The CPU executes each program instruction 
in sequence to perform the basic arithmetical, logical, and 
input/output operations of the computing device. Design and 
implementation of Such devices in general, and CPUs in 
particular, may vary; however, their fundamental functional 
ities remain very similar. 

Traditionally, in a computing device, the CPU is coupled to 
a memory and an Input/Output (I/O) subsystem, directly or 
through a bus, to perform the main functions of computing 
devices such as inputting and outputting data, processing 
data, and so forth. The memory may embed an operating 
system (OS), computer programs, applications, and so forth. 

Conventional operating systems are quite similar in archi 
tecture, in that each tends to have conventional file and 
memory operations, storage and graphical user interface 
operations, and so forth. Architectures of conventional oper 
ating systems include a layered design, device drivers, and 
Application Programming Interfaces (APIs). 

In conventional operating systems, a core kernel essen 
tially has master control over all the operations of the over 
lying Software, components, device drivers, applications, and 
So forth. Traditionally, operating systems implement multi 
tasking through time slicing and sequential allocation of 
computer resources to various threads and processes. A 
thread generally runs within a process and shares resources, 
e.g., memory, with other threads within the same process, 
whereas a process generally runs self-contained within its 
own right and completely independently of any other process. 
In multi-tasking, when a computing device includes a single 
processor, the operating system instructs the processor to 
switch between different threads and implement them 
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2 
sequentially. Switching generally happens frequently enough 
that the user may perceive the threads (or tasks) as running 
simultaneously. 
Many conventional computing devices utilize multiproces 

sors, or multicore processors, which may truly allocate mul 
tiple threads or tasks to run at the same time on different cores. 
However, conventional multicore processor architectures 
involve a small number of cores (typically 2, 4, 6, or 8 cores) 
due to the design limitations of traditional hardware and 
traditional operating systems. In the case of a conventional 
multicore processor, the computing device still must imple 
ment time slicing and Switching between different threads on 
each of its cores when performing several tasks involving 
multithreading allocated through the cores. In other words, 
even conventional multicore processors cannot implement 
true multitasking. 

Traditional processor architectures are also knownto expe 
rience hanging, cycling, or crashing of the threads when 
applications are poorly written or purposely malicious. In 
many instances, a thread crash may bring the whole processor 
down and result in time-division multiplexing of various 
threads or processes. 

Conventional processor designs use a fixed-frequency, 
continuously running crystal as the timing mechanism for 
clocking through microprocessor execution cycles. Thus, the 
crystal and the processor may continue running even if noth 
ing is being accomplished in the computing device, uselessly 
cycling around and waiting for a process to actually perform 
an action. This timing paradigm results in wasted energy. 
First, the crystal and processor transistors typically execute at 
their maximum speed at all times, thereby consuming excess 
power and generating excess heat. Secondly, it is inefficient to 
continue running clock cycles if no substantive process is 
actually running. However, these inefficiencies are unavoid 
able in the conventional operating system design. 

Furthermore, conventional operating systems require vari 
ous modifications and enhancements each year, such as incor 
poration of new communications layers for Ethernet drivers, 
Transmission Control Protocol/Internet Protocol (TCP/IP) 
stacks, Web browsers, and the like. Generally, these new 
layers are added on top of the conventional operating system, 
thereby increasing complexity, decreasing performance, and 
often leading to software crashes and security flaws. 

SUMMARY 

This Summary is provided to introduce a selection of con 
cepts in a simplified form that are further described below in 
the Detailed Description. This summary is not intended to 
identify key features or essential features of the claimed sub 
ject matter, nor is it intended to be used as an aid in determin 
ing the scope of the claimed Subject matter. 

In accordance with various embodiments disclosed herein, 
a computing device having multiple CPUs interconnected to 
each other is provided. Each CPU embeds an operating sys 
tem of an entirely new architecture. This operating system 
may be based fundamentally around an Internet stack, for 
example, the TCP/IP stack (instead of including a TCP/IP 
layer as in a conventional core operating system) and may 
utilize a conventional interface or similar extensions of the 
standard Berkeley Sockets (or WinSock) APIs. 

In accordance with various embodiments disclosed herein, 
a computing apparatus is provided. The computing apparatus 
may comprise a set of interconnected central processing 
units. Each CPU may embed an operating system (OS) com 
prising an operating system kernel, the operating system ker 
nel being a state machine and comprising a protocol stack. At 
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least one of the CPUs may further embed executable instruc 
tions for allocating multiple strands to one or more other 
CPUs of the set of interconnected CPUs. It will be understood 
that a strand, as used herein, is a hardware oriented process 
and is not necessarily similar to a conventional unit of pro 
cessing (i.e., a thread) that can be scheduled by an operating 
system. The Internet Stack is a set of communication proto 
cols used for the Internet and other similar networks. In one 
example embodiment, the Internet stack may comprise a 
TCP/IP stack Such that the OS kernel is a TCP/IP stack State 
machine with proprietary extensions that can be used to 
change or access internals of the TCP/IP stack state machine. 
In another example embodiment, the Internet stack may com 
prise a User Datagram Protocol/Internet Protocol (UDP/IP) 
stack such that the OS kernel is a UDP/IP stack state machine 
with proprietary extensions that can be used to change or 
access internals of the UDP/IP stack state machine. The CPU 
may comprise a processing unit, a memory and an I/O inter 
face. Executable instructions for the operating system may be 
stored within one or more types of storage media, such as for 
example, Read-Only Memory (ROM), Programmable Read 
Only Memory (PROM), Field Programmable Read-Only 
Memory (FPROM), One-Time Programmable Read-Only 
Memory (OTPROM), One-Time Programmable Non-Vola 
tile Memory (OTP NVM), Erasable Programmable Read 
Only Memory (EPROM), and Electrically Erasable Program 
mable Read-Only Memory (EEPROM or Flash ROM). 
The computingapparatus may further comprise at least one 

asynchronous clock to serve as an internal clock for the oper 
ating system. The asynchronous clock may be configurable to 
automatically stop when clock cycles are no longer needed. A 
time reference for the operating system kernel may be based, 
for example, on a Network Time Protocol (NTP), Simple 
Network Time Protocol (SNTP), or other suitable time pro 
tocol from a remote time server. In an example, the operating 
system may utilize a Sockets style API of sockets and ports on 
IP addresses for handling I/O requests. The set of CPUs may 
be interconnected through a bus. Executable instructions for 
the operating system may be executed through a Sockets API. 
The at least one CPU that embeds executable instructions for 
allocating multiple strands may further comprise instructions 
for generating multiple strands. 

According to another embodiment, a method for operating 
a computing apparatus is provided. The method may com 
prise receiving I/O requests, generating multiple strands 
according to the I/O requests, allocating the multiple strands 
to one or more CPUs of a set of CPUs, and processing the 
multiple strands. Each CPU may embed an operating system 
(OS) having a kernel comprising a protocol stack. 

According to various embodiments, the I/O requests may 
be received by a CPU, which embeds executable instructions 
for allocating multiple strands through multiple CPUs. Allo 
cating multiple strands may comprise communicating data 
via a network interface. 

In one embodiment, the method may further comprise 
assembling results of multiple strands processing. Executable 
instructions for the operating system may be stored in a 
memory and executed through a Sockets API. 

According to Some embodiments, a non-transitory com 
puter-readable storage medium is provided having embodied 
instructions thereon, instructions executable by a processorin 
a computing device to perform a method. The method may 
comprise receiving an input/output (I/O) request, generating 
one or more strands according to the I/O request, allocating 
the one or more strands and/or processes to one or more 
central processing units (CPUs) of a set of CPUs, wherein 
each CPU of the set embeds an operating system (OS) having 
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4 
a kernel comprising a protocol stack, and processing the one 
or more strands and/or processes. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Embodiments are illustrated by way of example and not 
limitation in the figures of the accompanying drawings, in 
which like references indicate similar elements. 

FIG. 1 is a block diagram of a CPU, according to various 
exemplary embodiments. 

FIG. 2 illustrates an exemplary architecture of an Internet 
stack State machine-based system, according to various 
embodiments. 

FIG. 3 is a flow chart illustrating a method for a CPU 
embedding a protocol stack-based operating system, accord 
ing to an exemplary embodiment. 

FIG. 4 is a block scheme of a computing device, according 
to various exemplary embodiments. 

FIG. 5 is a computing environment, according to various 
exemplary embodiments. 

FIG. 6 is a flow chart of a method for processing I/O 
requests by a computing device comprising multiple CPUs 
with embedded Internet stack-based operating systems, 
according to an exemplary embodiment. 

DETAILED DESCRIPTION 

Various aspects of the subject matter disclosed herein are 
now described with reference to the drawings, wherein like 
reference numerals are used to refer to like elements through 
out. In the following description, for purposes of explanation, 
numerous specific details are set forth in order to provide a 
thorough understanding of one or more aspects. It may be 
evident, however, that Such aspects may be practiced without 
these specific details. In other instances, well-known struc 
tures and devices are shown in block diagram form in order to 
facilitate describing one or more aspects. 

Various embodiments disclosed herein relate to computing 
devices comprising a set of interconnected CPUs. The num 
ber of the CPUs is not limited, and may be more than 100, or 
even more than 10,000, depending on specific application of 
the computing devices. The CPUs may be interconnected 
(e.g., through one or more buses) so that multiple strands, 
processes, and tasks can be allocated among a few or even all 
CPUs, thereby implementing parallelism or true multi-task 
ing. According to some embodiments, each of some or all of 
the CPUs is allocated a respective strand. 
As used herein, the term "central processing unit relates to 

a processor, a microprocessor, a controller, a microcontroller, 
a chip, or other processing device that carries out arithmetic 
and logic instructions of an operating system, a computer 
program, an application, or the like. According to various 
embodiments disclosed herein, the CPU comprises a process 
ing unit (typically including an arithmetic logic unit and a 
control unit) and a memory (also known as “registers.” or 
Read Only Memory (ROM)). In some embodiments, the CPU 
may further comprise an I/O Subsystem (Interface) to allow 
data transfer between the CPU and any other devices such as 
another CPU or I/O devices such as a keyboard, mouse, 
printer, monitor, network controller, and so forth. 
The CPU memory may store an operating system based 

entirely on a protocol stack. A protocol stack, as used herein, 
is a particular software implementation of a computer net 
working protocol suite. The protocol stack may be a TCP/IP 
stack, UDP/IP stack, Internet Control Message Protocol 
(ICMP) stack, combinations thereof, or other protocols. The 
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operating system embedded in the CPU is fundamentally a 
state machine. The kernel of the operating system is funda 
mentally a protocol stack. 

Such an operating system is inherently Internet-oriented 
and all Internet type functionality is natural and inherent in its 
protocol stack-based processor design and implementation. 
In addition, such an operating system may operate within 
small hardware, be run by very compact and efficient soft 
ware, possess minimal clock cycles for execution, have a 
natural Internet connectivity model and ultra low power con 
Sumption. 

FIG. 1 illustrates a block diagram of an exemplary CPU 
100. The CPU 100 may be a processor, a microprocessor, a 
chip, or the like. The CPU 100 may include a memory 110. 
which may embed an operating system and, optionally, fur 
ther software applications. The operating system may com 
prise a kernel to provide communications between Software 
and hardware components/modules. The kernel may be a 
state machine with extensions and may comprise an Internet 
stack. The Internet stack may include a set of communication 
protocols used for the Internet and similar networks. For 
example, the Internet stack may include a TCP/IP stack so 
that the OS kernel is a TCP/IP stack state machine. According 
to another example, the Internet stack includes a UDP/IP 
stack such that the OS kernel is a UDP/IP stack state machine. 
According to yet another example, the Internet stack includes 
a ICMP stack such that the OS kernel is a ICMP stack state 
machine. 
The memory 110 may store one or more modules. Exem 

plary modules, which may be stored in the memory 110. 
include an I/O request receiver module 120, a protocol han 
dling module 130, an I/O request processing module 140, and 
an optional network interface module 150. It will be appreci 
ated by one skilled in the art that the technology described 
herein encompasses those embodiments where one or more 
of the modules may be combined with each other or not 
included in the memory 110 at all. 
The CPU 100 may further include a processing unit 160 for 

executing various instructions and running modules stored in 
the memory 110. The processing unit 160 may comprise an 
arithmetic logic to carry out mathematical functions, and a 
control unit to regulate data flow through the processing unit 
160 and the CPU 100. Those skilled in the art would under 
stand that any suitable architecture of the processing unit 160 
is applicable. 
A module should be generally understood as one or more 

applications (routines) that perform various system-level 
functions and may be dynamically loaded and unloaded by 
hardware and device drivers as required. The modular soft 
ware components described herein may also be integrated as 
part of an application specific component. 

According to various embodiments, the modules may each 
include executable instructions for the operating system 
embedded into CPU 100 and may be executed through a 
Sockets API. 
The I/O request receiver module 120 may be configured to 

receive I/O requests. The requests may be from an application 
residing in an application layer of a computing device (as 
described in further detail with respect to FIG. 2). 
The protocol handling module 130 may be configured to 

handle a specific protocol for the protocol stack State machine 
implementation. For example, the protocol may be a TCP/IP 
stack such that the operating system is a TCP/IP stack state 
machine. In some embodiments, the protocol stack may 
include a different protocol stack (e.g., a UDP/IP stack or 
ICMP stack which may be used in addition to or in place of the 
TCP/IP stack). 
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6 
The operating system may utilize Sockets style API of 

Sockets and ports on IP addresses for handling I/O requests. 
The I/O request processing module 140 may be configured to 
process the I/O requests from an application according to the 
network protocol using the operating system. 
The optional network interface module 150 may be 

included and is configured to provide an interface between the 
protocol stack state machine and a network interface. The 
corresponding network interface may be a hardware unit or a 
“soft Ethernet controller. 
The CPU 100 may also comprise a clock. The CPU 100 

may require a clock to drive the state transitions as the CPU 
100, for instance, reads and decodes opcodes. Conventionally 
this is done by some external oscillator circuitry, typically 
driven by a fixed-frequency crystal. However, clocking may 
also be done by more than one crystal, e.g. a high frequency 
crystal (e.g., 50 MHz) one for the main CPU core, and other 
(lower frequency) crystals for other uses, e.g., programmable 
timers, watchdog timers etc. Also, a system comprising for 
instance a Universal Asynchronous Receiver/Transmitter 
(UART) and a Network Interface Controller (NIC) also typi 
cally require clockinputs of some sort. For instance, a UART 
may need a reliable clock source all the way from perhaps 300 
baud up to 921,600 baud. A NIC running 100 MBit Ethernet 
would typically need a clock source of 50 MHz or 25 MHz. 

Typically, a computer system needs to keep track of time, 
and can do so using internal counters to keep track of its 
internal clocks. However, in the case of an Internet-connected 
device. Such as in various embodiments described herein, the 
device is connected to the Internet and thus has readily avail 
able external time sources, for instance from Network Time 
Protocol (NTP), Simple Network Time Protocol (SNTP), or 
other suitable time protocols from a remote server (i.e., time 
protocol servers). For CPU 100, the processing unit 160 that 
may be included may utilize a time reference using the NTP 
SNTP or other suitable time protocol from a remote time 
server. Alternatively, the Precision Time Protocol (PTP) can 
be used for synchronization within a Local Area Network 
(LAN). 

According to some example embodiments, an asynchro 
nous (variable) clock may serve as an internal clock for the 
operating system for the CPU 100. The asynchronous clock 
may be configurable to automatically stop when clock cycles 
are no longer needed. The asynchronous system clock may be 
restarted by a wake-up "daemon' signal from the SNMP 
daemon (for example, an incoming data packet). 

Furthermore, a combination of the above-mentioned 
clocking approaches can be used. For example, in the initial 
phases, the internal clock may be used to trigger the CPU 100. 
The internal clock may be utilized until the CPU 100 is fully 
active, at which time most or all of the clock requirements 
may be transitioned to external time protocols, e.g., using 
Internet time servers using NTP, SNTP, or other suitable time 
protocols from a remote time server, or using PTP and SNMP 
to take over the control of the clocking operations. This would 
mean that internal clock circuitry for CPU 100 could be 
turned off, thus conserving power. 

Executable instructions for the CPU 100 may be optimized 
to be more efficient than conventional CPUs so that much 
lower clock rates are used. A self-adjusting cycle rate may be 
provided depending on the load and function to be performed. 
In addition, self-learning or predetermined algorithms for 
expected scenarios may be utilized to put the CPU 100 into a 
sleep or doze' mode. An expected external event may cause 
the CPU 100 to exit the doze mode, resume full speed opera 
tion to execute necessary operations and handle the external 
event, and return back to doze. In a doze or a deep sleep mode, 
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the CPU register contents may be read and stored in special 
registers with long deep-sleep data maintaining capabilities. 
Such clock saving measures may yield Substantial power 
savings. 

FIG. 2 illustrates an exemplary architecture 200 for a TCP/ 
IP stack state machine-based system, according to various 
embodiments. The operating system kernel may include vari 
ous components operating between applications 210 and 
hardware 220. The kernel may include a TCP stack 232, UDP 
stack 236, and/or ICMP stack 240, around which the operat 
ing environment may be built. The kernel may include TCP 
extensions 230, UDP extensions 234, ICMP extensions 238, 
which together with the respective TCP stack 232, the UDP 
stack 236, and the ICMP stack 240 are shown above an IP 
layer 250. The kernel may include one or more device drivers 
260, 262, and 264, as well as an Ethernet controller 270. 
The API for all operations of the operating system may 

include the conventional Berkeley Sockets style API of sock 
ets and ports on IP addresses. The Berkeley Sockets may 
specify the data structures and function calls that interact with 
the network Subsystem of the operating system. The kernel 
may handle the normal Sockets APIs. The Sockets API 280 
may also include Some optimized APIs. 
Any non-conventional functions (i.e., outside the normal 

functions used to communicate over the Internet) may be 
handled in a similar manner (e.g., by opening sockets and 
binding to ports). Thus, accessing of local input and output 
(e.g., keyboards, mice, and display Screens) may be accom 
plished through socket/port operations. Consequently, it is 
quite transparent as to whether a device is local or remote. A 
keyboard could beat a local hostat, for example, 127.0.0.1, or 
remote at another IP address. Though this transparency may 
bean aspect of other operating systems, it may not be inherent 
in the operating system design from the outset. Accordingly, 
the size of a basic kernel may be very small in a minimal 
configuration, perhaps as Small as a few hundred bytes. It will 
be understood that the Windows Sockets technology above is 
mentioned merely for the purpose of providing an example. 
In contrast to the present technology, in the Windows Sockets 
technology communications with a display device over the 
Internet may be cumbersome. 

FIG.3 is a flow chart illustrating an exemplary method 300 
for a CPU embedding a protocol stack-based operating sys 
tem. The method 300 may commence at operation 310 with 
receiving an I/O request. The request may be from an appli 
cation residing in an applications layer 210 of a computing 
device. In operation 320, the network protocol may be deter 
mined. According to some embodiments, the protocol is TCP/ 
IP so that the operating system is a TCP/IP stack state 
machine. In some other embodiments, the protocol is UDP/IP. 
UDP is an unreliable connectionless protocol sitting on top of 
IP, and TCP is a connection-oriented reliable protocol. The 
protocol may be a hybrid of TCP and UDP, wherein a data 
connection stream includes a mixture of UDP and TCP pack 
ets. UDP has less overhead and is suitable for lower-impor 
tance information, whereas TCP has a higher overhead but 
essentially guarantees delivery. For instance, a stream of data 
comprising non-essential information (Such as low-impor 
tance data) mixed with critical data could better be transmit 
ted over such a hybrid link. This hybrid protocol may be 
determined in operation 320. 

In operation 330, the I/O request may be processed accord 
ing to the network protocol. The processing may be per 
formed by the State machine that is the operating system (e.g., 
a TCP/IP stack state machine operating system). The operat 
ing system may utilize a Sockets style API of sockets and 
ports on IP addresses for handling I/O requests. The conven 
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8 
tional Berkeley Sockets style API of sockets and ports on IP 
addresses may be used. The Berkeley Sockets may specify the 
data structures and function calls that interact with the net 
work Subsystem of the operating system. 

FIG. 4 is a block scheme of a computing device 400, 
according to an exemplary embodiment. The computing 
device 400 may comprise five CPUs 410, 412, 414, 416, and 
418. Despite the fact that five CPUs are shown, it will be 
appreciated by one skilled in the art that any number of CPUs 
may be used in the computing device 400. Some embodi 
ments may include up to 10,000 CPUs or even more. 
The CPUs 410,412,414, 416, and 418 may all be coupled 

to a bus line 420 So that they may communicate data amongst 
each other. According to various embodiments disclosed 
herein, each CPU embeds an operating system based on a 
protocol stack. The protocol stack may be a TCP/IP protocol 
stack, UDP/IP stack, combinations thereof (i.e., hybrid 
stack), or other appropriate protocols. One particular example 
of the CPU embedding a TCP/IP stack-based operating sys 
tem is described with reference to FIG. 1. 

Although not shown in FIG. 4, the CPUs 410, 412, 414, 
416, and 418 may each include a memory storing an operating 
system and/or any further executable instructions and/or data. 
The memory can be implemented within the CPU or exter 
nally. In one example, all CPUs 410, 412, 414, 416, and 418 
may share a single memory coupled to the bus 420. As used 
herein, the term “memory” refers to any type of long term, 
short term, Volatile, nonvolatile, or other storage devices and 
is not limited to any particular type of memory or number of 
memories, or type of media upon which memory is stored. 
The CPUs 410, 412, 414, 416, and 418 in the example in 

FIG. 4 may further comprise an I/O Interface (not shown) 
implemented as software and/or hardware. One particular 
example of software implementation of the I/O Interface is 
shown as optional Network Interface Module 150 in FIG. 1. 
Alternatively, a hardware implementation may comprise an 
I/O controller, a Network Interface Controller (NIC) as an 
Ethernet controller, or the like. It will be apparent to those 
skilled in the art that the I/O interface may support any com 
munication standards and provide communications over a 
serial connection, parallel connection, firewire connection, 
Ethernet connection, and so forth. 
Each of the CPUs may further comprise a clock (not 

shown), which can be implemented within each CPU or exter 
nally. According to various embodiments, a single clock may 
be shared by all CPUs. 
One or more of the CPUs may embed a Master Control 

Program (MCP) 430. According to the example in FIG.4, the 
CPU 410 embeds the MCP430. The MCP430 is an applica 
tion or a routine for managing operations of the remaining 
CPUs 412, 414, 416, and 418 and, therefore, the CPU 410 
may be considered a “Master Core.” More specifically, the 
MCP 430 may be configured to receive I/O requests from 
outside devices, generate multiple Strands (processes, tasks) 
according to the I/O requests, and allocate these strands (pro 
cesses) to the other CPUs 412, 414, 416, and 418 so that the 
overall computational load is selectively distributed among 
the CPUs 412, 414, 416, and 418. However, in some embodi 
ments, strands may be allocated to some of the CPUs 412, 
414, 416, and 418, or to just one CPU. According to some 
embodiments, each of a number of CPUs (i.e., one, some, or 
all of the CPUs) is each allocated a respective strand. After 
execution of all strands and/or processes allocated to different 
CPUs, the results of the computations may be assembled in 
the Master Core for further outputting. Alternatively, the 
CPUs 412, 414, 416, and 418 may deliver results directly to 
corresponding external devices. According to some embodi 
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ments, the computing device 400 may comprise several Mas 
ter Cores for processing different types of I/O requests. In yet 
another embodiment, one Master Core may process all 
incoming I/O requests, while other Master Cores may be 
utilized for assembling the output of multiple CPUs, and 
transmitting of the assembled output results to corresponding 
outside devices. Those who are skilled in the art would readily 
understand that any possible number of Master Cores is pos 
sible, and each Master Core may implement the same or 
different functions. 

According to various exemplary embodiments, whenevera 
strand or process is created (e.g., by a typical 'C' CreateTh 
read(. . . ) function call), the MCP physically allocates a 
hardware core stack to the strand (or process). An allocated 
core stack/strand combination may also be referred to as a 
“core Strand’. The cores (or core Strands) may form a massive 
array in which core strands may be wired as a block to share 
resources (e.g., memory), or allowed to share the resources 
over their interconnects. Cores in the (massive) array of cores 
may be connected to each other, e.g., interconnected by a 
web-like structure. Cores may be allocated processes in some 
embodiments, i.e., cores which are processes or “process 
cores'. Such exemplary process cores are naturally isolated 
from other process cores since processes run independently 
of other processes, each process containing their own 
resources, in contrast to strands where resources may be 
shared therebetween. 
The computing device 400 allows only a certain number of 

CPUs to operate while the remaining CPUs, not involved in 
the processing, are turned off. For example, the computing 
device 400 may comprise 1,000 CPUs and a single Master 
Core. In response to the I/O request, the Master Core may 
generate 600 strands (variously within a number of processes) 
and allocate them to 600 CPUs. The remaining 400 CPUs 
may be turned off to conserve power. If another 100 strands 
later become needed, 100 of the 400 CPUs may be turned on 
in response to the allocating of the 100 strands to them so that 
the total number of the CPUs executing instructions becomes 
700. As clearly shown in this example, the overall power 
consumption is reduced compared to the traditional system 
where all processors run all the time, even if there is no 
process or strand to execute. 
The computing device 400 may facilitate greater stability 

of operations when compared to conventional multicore pro 
cessors. When one of the Strands crashes, for example, due to 
a poorly written routine or for some other reason, only the 
CPU running the strand is affected, while other CPUs remain 
unaffected. This is in contrast to conventional systems where 
the entire multicore processor may become affected by a 
single strand crash. 

FIG. 5 illustrates an exemplary embodiment of a comput 
ing environment 500. The computing environment 500 may 
comprise a computing device 510 (which is described in 
greater detail with reference to FIG. 4), a memory 520, a clock 
530, and communication ports 540, all of which may be 
coupled to a bus 550. 
The memory 520 may include any memory configured to 

store and retrieve data. Some examples of the memory 520 
include storage devices. Such as a hard disk, magnetic tape, 
any other magnetic medium, a CD-ROM disk, digital video 
disk (DVD), any other optical medium, any other physical 
medium with patterns of marks or holes, a RAM, a ROM, a 
PROM, an EPROM, an EEPROM, a FLASHEPROM, 
OTPROM, OTPNVM, Flash ROM or any other memory chip 
or cartridge, or any other medium from which a computer can 
read instructions. The memory 520 may comprise a data 
structure configured to hold and organize data. The memory 
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10 
520 may comprise executable instructions of the operating 
system and/or other routines and applications. The memory 
520 may also comprise a MCP, as described above with 
reference to FIG. 4. 
The clock 530 may serve as an asynchronous clock for the 

operating system for one or more CPUs of the computing 
device 510. The asynchronous clock may be configured to 
automatically stop when clock cycles are not needed. 
Communication ports 540 represent a connection interface 

that allows asynchronous transmission of data between the 
computing environment 500 and any edge devices such as a 
keyboard, mouse, monitor, printer, CD-ROM drive, network 
controller, and so forth. 
The computing environment 500 may be implemented as a 

desktop computer, a laptop computer, a mobile telephone, a 
Smartphone, a PDA, and many other consumer electronic 
devices. 

FIG. 6 is a flow chart of an exemplary method 600 for 
processing I/O requests by a computing device comprising 
multiple CPUs, with the CPUs each embedding a protocol 
stack-based operating systems. 
The method may commence in operation 610, when a CPU 

embedding a MCP (i.e., a Master Core) receives an I/O 
request. In optional operation 620, the network protocol may 
be determined. According to various embodiments, the pro 
tocol is TCP/IP, UDP/IP, a combination thereof, or the like. In 
operation 630, the Master Core may generate multiple strands 
(e.g., within processes) according to the I/O requests and the 
determined (optional in operation 620) network protocol. In 
operation 640, the Master Core may schedule and allocate the 
multiple strands among one or more CPUs 412,414, 416, 418 
(see FIG. 4) and other CPUs of the computing device. The 
allocation of multiple Strands may include communicating 
data via a network interface (e.g., via a bus using I/O inter 
faces of the CPUs). 

In operation 650, the strands (or alternatively the processes 
which contain strands) may be processed in the one or more 
CPUs. According to various embodiments, the processing at 
each CPU is performed by the state machine that is the oper 
ating system, e.g., a TCP/IP stack State machine operating 
system. The operating system may utilize Sockets style API 
of sockets and ports on IP addresses for handling these 
Strands. 

In optional operation 660, processing results (e.g., arith 
metical or logic results) from multiple CPUs may be 
assembled by the Master Core for further outputting. Accord 
ing to another example, assembling may be performed within 
a different CPU, or, alternatively, processing results may be 
directly transmitted to a corresponding edge device. 
The following provides an overview of the functionalities 

facilitated by protocol stack-based multiple processors, 
which can be used in different computing devices according 
to various embodiments disclosed herein. 
A conventional operating system may manage internal 

tasks and external programs in a dictatorial manner, wherein 
the appearance of multitasking is achieved through rapid 
allocation of time slices among multiple strands and pro 
cesses. Such a system may be flexible and of a general pur 
pose. However, applications and unknown driver components 
have little or no control over their scheduling in Such a system. 

In contrast to a conventional operating system, the operat 
ing system according to the various embodiments disclosed 
herein is essentially a state machine. This results in the whole 
environment being inherently cooperative and friendly to the 
operating system as a state machine model. All systems and 
application components are built together in an open and 
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symbiotic relationship. Only components actually required in 
a target system are built into the environment. 

In a conventional operating system, the kernel and other 
systems components include all the normal functions of file 
and memory management, timers, input and output, TCP/IP. 
and the like. There are numerous strands and processes going 
on, such as kernel executive cycles around all the running 
processes, updating clocks, checking communication ports, 
updating displays, checking on Ethernet traffic, and so forth. 
AS Such, the conventional operating system provides a highly 
sophisticated and flexible system, but with the downside of a 
tremendous number of activities (and hence clock cycles and, 
therefore, energy) going on all the time. 

In contrast, an implementation according to various 
embodiments disclosed herein may include only the required 
components. As a result, execution times and code sizes may 
be optimized, resulting in fewer energy cycles. Such comput 
ing device may have a number of state machines handling the 
operations at a lower level and forwarding data packets up 
through the TCP/IP stack. When no tasks need to be per 
formed, the state machines are idle. Therefore, the protocol 
stack-based CPUs according to various embodiments dis 
closed herein eliminate unnecessary internal clock cycles 
through the use of intelligent tasking, in contrast to conven 
tional multi-tasking. 

The ultra-low power aspect of the computing device 
according to the embodiments disclosed herein may provide 
greatly improved battery life for various devices. Boot up 
time for devices may be greatly reduced by executing instruc 
tions from the ROM, saving general state information in 
battery-backed SRAM, and saving crucial microprocessor 
register setting and other state information in special registers 
in custom application-specific integrated circuits (ASICs), 
for example. 
A full IP stack typically includes an application layer, 

transport layer, Internet layer, and link layer. The basic oper 
ating system for the computing device may not normally have 
all the components of a full IP stack. A basic kernel may have, 
for example, just HTTP on top of TCP on top of IP on top of 
Ethernet. Alternatively, the kernel may be built with SNMP 
on UDP on IP on Ethernet. Those who are skilled in the art 
would readily understand that various possible implementa 
tions are possible. 

The computing device may also attempt to identify which 
Sub-processes in a larger process need to be executed sequen 
tially and which Sub-processes may be executable in parallel. 
The computing device may provide a model of a set of simple 
state machines. In complex systems, a State Machine Man 
ager (SMM) may be provided to regulate and control the run 
flow. In operation, applications registerpriority and execution 
parameter requests with the SMM, which in turn handles 
them accordingly in a fair manner. 

Conventionally, multicore processors are designed first, 
and thereafter an operating system is designed to run on Such 
processors. As a result, the operating system design is limited 
by compromises dictated by the multicore processor design. 
The applications are then designed to run on the operating 
system. The design of the applications is limited by all the 
limitations dictated by the particular operating system design. 

In contrast to this conventional design process, an operat 
ing system may be designed first according to the embodi 
ments described herein. Any unnecessary aspects may be 
removed for the design. A computing device having multiple 
CPUs may then be designed. The design process may be 
iterated to make still further reductions down to the essential 
components. 

12 
According to various embodiments, the operating system 

code executes within a ROM. While saving register contents 
during a deep sleep, execution within the ROM and as a state 
machine provide an “instant-on' capability where it may take 

5 just milliseconds for the system to resume execution. ARAM 
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memory may be used for only truly read-write data that 
requires it, while the execute-only code may be stored in the 
ROM. The slower access times of ROM devices versus RAM 
devices may not cause an issue, because the instruction cycle 
times for the system are generally slow, albeit for a reduced 
number of cycles. 
The terms “computer-readable storage medium' and 

“computer-readable storage media” as used herein refer to 
any medium or media that participate in providing instruc 
tions to a CPU for execution. Such media can take many 
forms, including, but not limited to, non-volatile media, Vola 
tile media and transmission media. Non-volatile media 
include, for example, optical or magnetic disks, such as a 
fixed disk. Volatile media include dynamic memory, Such as 
system RAM. Transmission media include coaxial cables, 
copper wire, and fiber optics, among others, including the 
wires that comprise one embodiment of a bus. Common 
forms of computer-readable media include, for example, a 
floppy disk, a flexible disk, a hard disk, magnetic tape, any 
other magnetic medium, a CD-ROM disk, DVD, any other 
optical medium, any other physical medium with patterns of 
marks or holes, a RAM, a PROM, an EPROM, an EEPROM, 
a FLASHEPROM, any other memory chip or cartridge, or 
any other medium from which a computer can read. 

Various forms of computer-readable media may be 
involved in carrying one or more sequences of one or more 
instructions to a CPU for execution. A bus may carry the data 
to system ROM (or RAM), from which a CPU retrieves and 
executes the instructions. The instructions received by System 
ROM (or RAM) may optionally be stored on a fixed disk 
either before or after execution by a CPU. 
The above description is illustrative and not restrictive. 

Many variations of the embodiments will become apparent to 
those of skill in the art upon review of this disclosure. The 
scope of the subject matter should, therefore, be determined 
not with reference to the above description, but instead should 
be determined with reference to the appended claims along 
with their full scope of equivalents. 

While the present embodiments have been described in 
connection with a series of embodiments, these descriptions 
are not intended to limit the scope of the subject matter to the 
particular forms set forth herein. It will be further understood 
that the methods are not necessarily limited to the discrete 
steps or the order of the steps described. To the contrary, the 
present descriptions are intended to cover Such alternatives, 
modifications, and equivalents as may be included within the 
spirit and scope of the Subject matter as disclosed herein and 
defined by the appended claims and otherwise appreciated by 
one of ordinary skill in the art. 

What is claimed is: 
1. A computing apparatus, comprising: 
a set of interconnected central processing units (CPUs), 

each of the CPUs embedding an operating system (OS), 
the OS comprising an operating system kernel, the oper 
ating system kernel being a state machine based on a 
network protocol stack; and 

at least one of the CPUs further embedding executable 
instructions for allocating multiple strands to one or 
more other CPUs of the set of interconnected CPUs. 

2. The apparatus of claim 1, wherein the one or more other 
CPUs includes all other CPUs of the set such that the at least 
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one of the CPUs embeds executable instructions for allocat 
ing multiple strands to all other CPUs of the set of intercon 
nected CPUs. 

3. The apparatus of claim 1, wherein the one or more other 
CPUs includes less than all of the other CPUs of the set, any 
of the CPUs not allocated strands being turned off to conserve 
power. 

4. The apparatus of claim 1, wherein the one or more other 
CPUs includes less than all of the other CPUs of the set, and 
wherein any of the CPUs not allocated strands are placed in a 
sleep mode to conserve power. 

5. The apparatus of claim 1, wherein the network protocol 
stack comprises a User Datagram Protocol/Internet Protocol 
(UDP/IP) stack such that the OS is a UDP/IP stack state 
machine or Internet Control Message Protocol (ICMP) stack 
Such that the OS is ICMP Stack. 

6. The apparatus of claim 1, wherein each of the CPUs 
comprises a processing unit, a memory and an Input/Output 
(I/O) interface. 

7. The apparatus of claim 6, wherein the memory includes 
one or more of the following memory types: a Read-Only 
Memory (ROM), Programmable Read-Only Memory 
(PROM), Field Programmable Read-Only Memory 
(FPROM), One-Time Programmable Read-Only Memory 
(OTPROM), One-Time Programmable Non-Volatile 
Memory (OTPNVM), Erasable Programmable Read-Only 
Memory (EPROM), and Electrically Erasable Programmable 
Read-Only Memory (EEPROM or Flash ROM), the execut 
able instructions for the OS being stored within the one or 
more memory types wherein all operations for the OS are 
executed using a Sockets applications programming interface 
(API). 

8. The apparatus of claim 1, further comprising at least one 
asynchronous clock to serve as an internal clock for the OS. 

9. The apparatus of claim 8, wherein the asynchronous 
clock is configurable to automatically stop when clock cycles 
are no longer needed. 

10. The apparatus of claim 1, wherein a time reference for 
the OS kernel is based on a Network Time Protocol (NTP), 
Simple Network Time Protocol (SNTP), or a Precision Time 
Protocol (PTP). 

11. The apparatus of claim 1, wherein the set of intercon 
nected CPUs are interconnected through a bus. 

12. The apparatus of claim 1, wherein executable instruc 
tions for the operating system are executed through a Sockets 
applications programming interface (API). 

13. The apparatus of claim 1, wherein the OS utilizes a 
Sockets style API of sockets and ports on Internet Protocol 
(IP) addresses for handling I/O requests. 

14. The apparatus of claim 1, wherein the at least one CPU 
embedding executable instructions for allocating multiple 
Strands further comprises instructions for generating multiple 
Strands. 

15. The apparatus of claim 1, where the set of intercon 
nected CPUs comprises 1000 interconnected CPUs. 
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16. A method, comprising: 
receiving an input/output (I/O) request; 
generating one or more strands according to the I/O 

request: 
allocating the one or more strands to one or more central 

processing units (CPUs) of a set of CPUs, wherein each 
CPU of the set embeds an operating system (OS) having 
a kernel based on a network protocol stack; and 

processing the one or more strands. 
17. The method of claim 16, wherein any of the CPUs not 

allocated at least one of the strands is turned off to conserve 
power. 

18. The method of claim 16, wherein the network protocol 
stack comprises a Transmission Control Protocol/Internet 
Protocol (TCP/IP) stack such that the OS is a TCP/IP stack 
state machine. 

19. The method of claim 16, wherein the network protocol 
stack comprises a User Datagram Protocol/Internet Protocol 
(UDP/IP) stack such that the OS is a UDP/IP stack state 
machine or Internet Control Message Protocol (ICMP) stack 
Such that the OS is ICMP Stack. 

20. The method of claim 16, wherein at least one of the 
CPUs of the set of CPUs receives I/O requests, the at least one 
CPU embedding executable instructions for allocating the 
multiple strands to a number of the other CPUs of the set of 
CPUS. 

21. The method of claim 16, wherein allocating comprises 
communicating data via a network interface. 

22. The method of claim 16, further comprising assem 
bling results of the processing. 

23. The method of claim 16, wherein executable instruc 
tions for the operating system are stored in one or more of the 
following memory types: Read-Only Memory (ROM), Pro 
grammable Read-Only Memory (PROM), Field Program 
mable Read-Only Memory (FPROM), One-Time Program 
mable Read-Only Memory (OTPROM), One-Time 
Programmable Non-Volatile Memory (OTPNVM), Erasable 
Programmable Read-Only Memory (EPROM), and Electri 
cally Erasable Programmable Read-Only Memory (EE 
PROM or Flash ROM), wherein all operations for the OS are 
executed using a Sockets applications programming interface 
(API). 

24. A non-transitory computer-readable storage medium 
having embodied instructions thereon, instructions execut 
able by a processor in a computing device to perform a 
method, the method comprising: 

receiving an input/output (I/O) request; 
generating one or more strands according to the I/O 

request: 
allocating the one or more strands to one or more central 

processing units (CPUs) of a set of CPUs, wherein each 
CPU of the set embeds an operating system (OS), the OS 
comprising a kernel that is a state machine based on a 
network protocol stack; and 

processing the one or more strands. 
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