ANR A 0 R YO0 A
US005560024A

United States Patent [(11 Patent Number: 5,560,024
Harper et al. 451 Date of Patent: Sep. 24, 1996
[54] COMPUTER POWER MANAGEMENT 4,545,030 1071985 KitChinl wrveeeereereeeenrranressnsssseneens 395/750
SYSTEM 4,554,630 11/1985 Sargent et al. 395/575
4,570,219 2/1986 Shibukawa et al.ccccceeevrrenne 395775
[75] Inventors: Leroy D. Harper, Sunnyvale; Grayson 4,573,117 2/1986 Boney 3951750
IC1-0 g;ixh;ix:;ygv alCel}ijlElllg; gouglas A. (List continued on next page.)
Cullimore, Palo Alto; Gavin A. FOREIGN PATENT DOCUMENTS
g; i‘:i{’;w’sglgzﬁf"};oﬁﬁ‘;a R. 0229692A3 7/1986 European Pat. OFF. .
Faier k’ . Rod . kK W St. both of 0265209A1 4/1988 European Pat. Off. .
ANKS; JoCeric W. Stone, botl o 0303020 2/1989 European Pat. Off. GOGF 1/00
Sunnyvale, all of Calif. 2080585 2/1982 United Kingdom .
[73] Assignee: Fujitsu Personal Systems, Inc., Santa OTHER PUBLICATIONS
Clara, Calif Abstract—IP-A-58 171842, vol. 008 No. 008 (B-221), 13
Jan. 1984, (Matsushita Denshi Kogyo KK) Oct. 8, 1983.
[21] Appl. No.: 384,284
[22] Filed: Feb. 1. 1995 (List continued on next page.)
: . 1,
L. Primary Examiner—Ayaz R. Sheikh
Related U.S. Application Data Attorney, Agent, or Firm—Skjerven, Morrill, MacPherson,
Franklin & Friel; Norman R. Klivans
{62] Division of Ser. No. 87,249, Jul. 1, 1993, abandoned, which
is a division of Ser. No. 436,642, Nov. 13, 1989, abandoned,
which is a continuation-in-part of Ser. No. 373,440, Jun. 30, (571 ABSTRACT
1989, abandoned. A low power management system including both hardware
[51] Int. CL® GO6F 1/08 and software is provided for a battery powered portable
[52] US.CL 395/750: 364/DIG. 1: computer. The low power management system powers down
364/270: 364/270.2: 364/27’3 364/2731, various sections of the computer when they are not used. The
’ ’ " 364/2735 low power management system is controlled by a control
[58] Field of Search 395/750. 550: program in the microprocessor of the computer. The low
3 6,4 /70,; power management system includes the capability to turn off
clock signals to various sections of the computer based upon
[56] References Cited demand. Also included is the capability to tumn on clock
signals based upon demand. The low power management
U.S. PATENT DOCUMENTS system also includes the capability to turn on the computer
. upon a press of a key on the computer keyboard. The low
i?;‘égg? S; ig;g ¥°I,‘a“gmnt?1‘ﬂ' """"""""""" gggg gg power management system monitors software application
4137563 11979 T:J;Iggztio CLAL o 395550 Programs for keyboard activity so as to turn off the micro-
4203153 571980 BOYA oo 395/750 processor in the computer in response to a loop looking for
4279020 7/1981 Christian f al. oo 3957750 @ keypress and certain other loops which can be monitored
4317,180 2/1982 Lies 395750 without use of the microprocessor.
4,317,181 2/1982 Tezaet al. ..ccceeecceerereerrercrnnen 179/81
4,409,665 10/1983 Tubbs 364/707 . .
4435761 31984 KIMOWO oo oo 395/550 13 Claims, 14 Drawing Sheets
4,455,623 6/1984 Wesemeyer et al.cooveuncen.. 395/425 . .
4,463,440 7/1984 Nishiura et al. 395/550 Microfiche Appendix Included
4,479,191 10/1984 Nojima et al. 364/707 (4 Microfiche, 190 Pages)

) 150
Y 15

Tolerance
OK2

N 16
Go to Display Mode
(Display ON, Clock Offy

186~

5,560,024

Page 2
U.S. PATENT DOCUMENTS 5,121,500 6/1992 Arlington et al.ccoeeeeeeneenen. 395/750
5,167,024 11/1992 Smith et al. 395/750
4,612,418 5/1986 Takeda et al.covrsererecrencens 179/81 5,201,059 4/1993 Nguyen 395/750
4,615,005 9/1986 Maejima et al. i 395/550 5,218,704 6/1993 Watts, Jr. et al. 395/750
4,669,059 5/1987 Little et al. 395/750 5222239 6/1993 Rosch et al. 395/750
4,698,748 10/1988 Juzswik et al. 395/750 5237,697 8/1993 Nakano 395/750
4,747,041 5/1988 Engeletal. ... - 395/750 5,247,655 9/1993 Khan et al. .oooeevorveoeemenrerrrenna. 395/750
4,748,559 5/1988 Smith et al. 395/750
4,758,945 7/1988 Remediccooeveerrerenerasvereennen 364/750 OTHER PUBLICATIONS
4,780,843 10/1988 T{etjen 395/725 Abstract—IP-A-02 105213, vol. 014 No. 321 (P-1074), 10
4,809,163 2/1989 Hirosawa et al. ... 395/750 . L. .
4819164 4/1989 BIANSON woooooooeoooo 395550 Jul. 1990, (Mitsubishi Electric Corp.) Apr. 17, 1990.
4:823:292 41989 HiIlion . 364/707 Electronic Design vol. 32, No. 20, 4 Oct. 1984, Waseca,
4,825,358 4/1989 LEIWID ..oooovoevverenreneenneesceneeneen 395700 ~ Minnsota, USA pp. 185-191; C. A. Mroz et al.: Advances
4,825,407 4/1989 Loessel et al. 395/750 Clock Controller Cuts Power Needs, Size Of Static CMOS
4,841,440 6/1989 Yonezu et al. 395/550 Systems *p. 187, left column, line 10-right column, *line 4,
4,851,987 7/1989 Day 395/550 p. 188, right column, line 10-line 43 *p. 191, left column,
4,870,570 1071989 Satoh et al.verereeirinnnnnes 395/750 line 6—right column, line 6*.
2255,52? 1;; }ggg glh?fa " ggg%g Hewlett-Packard Journal vol. 37, No. 7, Jul. 1986,
[petts avs et al. Amstelveen, Netherlands pp. 4-13; J. T. Eaton et al: “Design
4,907,150 3/1990 Arroyo et al. ... 395/575 N [.
4980836 12/1990 Carter et al. 364/483 Of HP’s Portable Computer Family” *p. 5, right column,
5,025,387 6/1991 Franc 364/493 line 28—Iline S51* *p 10, left column, line l—p. 11, left
5,041,964 8/1991 Cole et al. ..owreermereecrrrererrnne. 395/750 column, line 40*.
5,083,266 1/1992 Watanabe Brownstein, Mark, et al., “Quarterdeck Plans to Collect Fees
5,086,387 2/1992 Arroyo et al. on Desqview Patent”, Infoworld, Apr. 24, 1989.

U.S. Patent Sep. 24, 1996 Sheet 1 of 14 5,560,024

DMA-OFF VCO-OFF
VCO-2 MHz UART DISPLAY-ON
DISPLAY-ON access UART-ON
UART-ON 21 DMA-OFF

100 mw

COMMUNICATE
and DISPLAY

150 mw
Low-volt
COMMUNICATE

VCO-OFF

DISPLAY-OFF
vt UART-OFF
gle%ZA%N DMA-OFF 12
UART-ON Decision based

on hardware

450 mw
5-volt
COMMUNICATE

10 VCO2MHz
DISPLAY-OFF
UART-OFF
DMA-OFF

Low-volt
COMPUTE

VCO-7 MHz
DISPLAY-ON
UART-ON
DMA-ON
450 mw
DMA 50 mw Timer
DISPLAY or

VCO-7MHz 17 Keyboard

DISPLAY-ON VCO-OFF Activity

UART-OFF DISPLAY-ON VCO-2MHz

DMA-OFF UART-OFF DISPLAY-ON

DMA-OFF UART-OFF

DMA-ON

FIG. 1

5,560,024

Sheet 2 of 14

Sep. 24, 1996

U.S. Patent

¢ 94
5| - HOLOINNOD 02y
WIH3S TYNHILX3 SSV19
3 ” AY1dSIa
(T3A311LL NON) og (13A3717L) gamod” aon
¥1vQ IH3S V1vQ TVIH3S W 989 ~_
HOLVISNVHL 13ATT h|P |/ | _STVNOIS ﬂ
FOV1T0A TINNVHO LHYN 28 NWOJ/MOH ™ 2,
TVIHIS T19YN3 e R
7 A 89 Hd
c8 7Ly JoHiN0O | HIMOd , mmmm_%_
98 daMOd Avidsia | AV1dSId H3MOd
9~ 4 e
SY00T0
Lquyo [90¢ 903 10318 AVidsia 1 V1Y
AHOWAN | 2 [HOUNS| < d0S ey HOLYTIOSO| o 01907
H3MOd NERELRE M00TO HITIOHLNOD
anos v1va IOHINGD w
"~ ¥ . LHvn g3IMOd AVidSia~| AY1dSId [TIndIAo™| Av1dsid
: +A . 8g -/ ~29
* EELECED
T0HINOD ——»] 95 A
| Qdv0 HIMOd SNOLLVOINTAIOD Tvigg] oo a4o103t JIIDIdS |
AHOWAW HOLWS| g any 108109 Ndo
NId S DN 300030 SS3Haay [~ viva"
4amod ﬂ. R0 ﬂm:msﬁ N* L0135 H3MOd GEVD ABONEN - SETy
gy~ gy 4 o8y 09~ £ 2

+A

3,560,024

Sheet 3 of 14

Sep. 24, 1996

U.S. Patent

IWN

L~ \ =~ J3H0NO MR =
601~ a1
10 IAN
YOHI| 1uvn [Tavn
e
904 L 10JJUON
abelolg
10 IAN SSep
FOHI | pafey [precghey »J
(]S 1 h—— €99
\A.\m.vm
Obin AN 0% ~Cegg
g | WL
Bay
g6~ 001 siajs
vy 0N yyyy /O o_%__oo%% S mw 07~
10 U] 19 o_mm“ 8p0o%eq (e A N e
| le—{ W | SSOIPPY e Ndd
6Gzg |00HI| Boig NN Auv_mmcs__ mwmnM N
oo V200 0L 26
201~ dnaiaup JWN
- €0} ydnieiur Ndo

U.S. Patent Sep. 24, 1996 Sheet 4 of 14 5,560,024
NM! Interrupt 102
L 54 52Dt A0
ata ntr
NM! Addr Masks NMI
CPU G > Address Intr Intr
oot e» Decode W Ctrl
and AL
40 56 Specific 112 101
52b ™\ Registers
132
p
o o 60
<> Readwrt [_]|
Monitor [541 e 122
134 | 56b
UART
> Activity L
Monitor
136 128
Prog. Int. UART
<> Activity [o]]__o| Clock UART NMI
Monitor Ctrl
138 124
o | Video
2 hooees [T Il_err;Sh INT16h NM|
Monitor
A1
Mass
<> Storage :_
Monitor

U.S. Patent Sep. 24, 1996 Sheet 5 of 14 5,560,024

The following is a definition of the /O map Table 1 show
the ports included that are compatible with the [BM PC/XT, while Tables 2 and 3 show
the Poget specific I/O for the SYSTEM ASIC and PERIPHERAL ASIC respectively.

TABLE 1
IBM PC/XT COMPATIBLE I/0

/O Address Usage
0000-001F DMA Controller internal registers
0020-003F Interrupt Controller internal registers
0060-0063 PP! Internal I/O
0080-009F DMA Page Registers
00AQ-00BF NMi Mask Register
03B0-03BB Monochrome Display Adapter registers
03D0-03DF Color Graphics Adapter registers
03F8-03FF Primary Asynchronous Adapter registers

TABLE 2

SYSTEM ASIC POQET PQ-XT SPECIFIC I/0
Port Address Bit Value Description

F6Co 0 1 Map device connected to EMCS0
to C0000 - CFFFFh
00h at Reset 1 1 Map device connected to EMCS1
' to CO00C - CFFFFh
2 1 Map device connected to EMCS2
to C0000 - CFFFFh
3 1 Map device connected to EMCS3
to C0000 - CFFFFh
4 1 Map device connected to EMCS0
to DO0OO - DFFFFh
5 1 Map device connected to EMCST
to DO0OO - DFFFFh
6 1 Map device connected to EMCS2
to DO00O - DFFFFh
7 1 Map device connected to EMCS3
to DO0OQ - DFFFFh
F6C1 - 06 0-7Fh Device page to be mapped to C0000 - CFFFFh
00h at Reset
F6C2 0-6 0-7Fh Device page to be mapped to D0000 - DFFFFh
00h at Reset
F6C3 0-1 Oh Selected 0 wait states for memory cycles
00h at Reset 1ih Selected 1 wait state for memory cycles
2h Selected 2 wait state for memory cycles

FlG 5 A 3h Selected 3 wait state for memory cycles

U.S. Patent Sep. 24, 1996 Sheet 6 of 14 5,560,024

FeC4 0 1 Enable Error NMI FlG . 58
00h at Reset 1-7 Reserved
F6C5 0 1 Map device connected to EMCS0
to E0000 - EFFFFh
80h at Reset 1 1 Map device connected to EMCS1
to EQ0QO - EFFFFh
2 1 Map device connected to EMCS?2
to E0000 - EFFFFh
3 1 Map device connected to EMCS3
to EQ00Q - EFFFFh
4 1 Map device connected to EMCS0
to EQ0QO - FFFFFh
5 1 Map device connected to EMCS1
to E0000 - FFFFFh
6 1 Map device connected to EMCS?2
to £E0000 - FFFFFh
7 1 Map device connected to EMCS3
to EO00O - FFFFFh
F6C6 0-6 0-7Fh Device page to be mapped to E0000 - EFFFFh
00h at Reset
.F6C7 0-6 0-7Fh Device page to be mapped to FO000 - FFFFFh
FFh at Reset
F6E4 0-3 Reserved for PERIPHERAL ASIC
2(’):2 E}: E{eset 4 1 Assert DISEXPP on accesses to A8000 -
5-7 Reserved for PERIPHERAL ASIC
TABLE 3

PERIPHERAL ASIC POQET PQ-XT SPECIFIC I/0

Port Address Bit Value Description

FEEQ 03 0-Fh Duty cycle of the contrast signal.
RW Oh corresponds to 1/16 duty cycle,
00h at Reset 1h corresponds to 2/16 duty cycle, ...

Eh corresponds to 15/16 duty cycle,
Fh corresgonds to 15/16 duty cycle.
Initial keyboard repeat delay
Subsequent keyboard repeat delay

o0

o
o

@
udn

FBE1
R/W
00h at Reset

MDA compatible display

CGA compatible display

Disable the internal display

Disable the character blinking feature
Disable the automatic updating of bit-map
memory by the display controller

Disable the UART from the 1/O bus

Masks IRQQ's from waking the system clock
Masks IRQ1's from waking the system clock
Masks IRQ4's from waking the system clock

~N OO LN —
—t b ke b

U.S. Patent Sep. 24, 1996 Sheet 7 of 14 5,560,024

F6E2 0-3 0-Fh PG/XT compatible dip switches 5-8.
W only 4-7 0-Fh PC/XT compatible dip switches 1-4.
00h at Reset
FBE3 0 1 EXTRA input signal is active (high).
R only 1 1 LOWBAT input signal is active (high).
2 0 PQKEYN input signal is active (low).
3 0 ONOFFN input signal is active (low).
4 0 PERCLKN input signal is active (low).
EXTSYSCLK is in use.
5 0 CALMAN input is active §Iow :
6 0 CALMBN input is active {low).
7 1 Display controller is in a state to which
the system clock may be stopped.
F6E4 0 0 CDET1AN input is active (low).
RW 1 0 CDET2AN input is active (low).
0Xh at Reset 2 0 CDET1BN input is active (low).
3 0 CDET2BN input is active (low).
4 1 Enable access to font ROM/RAM
at A8000 - AFFFFh.
5 0 LOWBAT signal indicates a dead battery
1 LOWBAT signal indicates a low battery
6 1 Clear 54.9 ms increment counter.
7 1 INT16h has been called since the last time
NMT's were cleared.
FBES 0-7 O-FFh Least significant byte of the 54.9 ms
R only increment counter.
FEES 01 0-3h Most significant bits of the 54.9 ms
R only increment counter
2-7 Reserved
FEE7 0-1 Oh Select 40 x 25 text mode (CGA only)
R only ih Select 80 x 25 text mode
2-3h Select graphics mode (CGA only)
2 1 Enable the display controller to refresh
the LCD.
35 Oh Display B8000-B8FFFh (CGA 80 x 25 text only).
Display B8000-B87FFh (CGA 40 x 25 text only).
1h Display B8000-B8FFFh (CGA 80 x 25 text only).
Display B87FF-B8FFFh (CGA 40 x 25 text onfy).
2h Display B9000-BIFFFh (CGA 80 x 25 text onle/).
Display B97FF-BIFFFh (CGA 40 x 25 text only).
3h Display B9000-B9FFFh (CGA 80 x 25 text oan/).
Display B97FF-BIFFFh (CGA 40 x 25 text on yg.
4h Display BA0OO-BAFFFh (CGA 80 x 25 text only).
Display BA7FF-BAFFFh (CGA 40 x 25 text only).
5h Display BAOOO-BAFFFh (CGA 80 x 25 text only).
Display BA7FF-BAFFFh (CGA 40 x 25 text only).
6h Display BBO0O-BBFFFh (CGA 80 x 25 fext onI?r).
Display BB7FF-BBFFFh (CGA 40 x 25 text only).
7h Display BB000-BBFFFh (CGA 80 x 25 text onle/).
Display BB7FF-BBFFFh (CGA 40 x 25 text only)

FlG 5C 6 1 {RQO timer interrupt has occured since the

U.S. Patent

F6ES
R/W
00h at Reset

F6E9
RW
00h at Reset

FGEA
R only

FGEB
R only

FIG. 5D

~N O O~ w NN —=O

P N —k O ~NOUAWNh—O

(8]

Sep. 24, 1996 Sheet 8 of 14 5,560,024

- O da

last time NMI's were cleared. T
IRQ1 keyboard interrupt has occurred since the
last time NMI's were cleared.

Enable the EXTRA signal to generate an NMI.
Enable the LOWBAT si?nal to generate an NMI.
Enable any of the NMI if they are individually
enabled.

Enable the video controller to generate an

NMI when video display pages are changed.
Enable the PQKEYN signal to generate an NMI.
Enable the ONOFFN signal to generate an NMI.
Enable the IOCHKN signal to generate an NMI.
Ene;\?lbtlal the CALMAN and CALMBN to generate
an NMI.

Enable the CDET1AN signal to generate an NMI.
Enable the CDET2AN signal to generate an NMI.
Enable the CDET1BN signal to generate an NMI.
Enable the CDET2BN signal to generate an NMI.
Enable an IRQO request to generate an NMI.
Enable an IRQ1 request to generate an NM!.
Enable NMI's for reading 00058h (INT16h).
Clear all NMI's and indicator latches.

Signal ONOFFN has been active since the last
time NMI's were cleared.

Signal PQKEYN has been active since the last
time NMI's were cleared.

The display page register has been written
since the last time NMI's were cleared

The PERIPHERAL ASIC generated an NM!.
One of either CALMAN or CALMBN signal has
been active since the last time NMI's were
Cleared.

Signal LOWBAT has been active since the last
time NMI's were cleared.

Signal EXTRA has been active since the last
time NMI's were cleared.

Signal IOCHKN has been active since the last
time NMI's were cleared.

Signal CDET1AN has made a 0-1 transition
since the last time NM!'s were cleared.
Card a extended pin out-going NMI.

Signal CDET1AN has made a 1-0 transition
since the last time NMI's were cleared.
Card a extended pin in-coming NMI.

Signal CDET2AN has made a 0-1 transition
since the last time NMI's were cleared.
Card a micro switch out-going NMI.

Signal CDET2AN has made a 1-0 transition
since the last time NMI's were cleared.
Card a micro switch in-coming NMI.

Signal CDET1BN has made a 0-1 transition
since the last time NMI's were cleared.

U.S. Patent Sep. 24, 1996 Sheet 9 of 14 5,560,024

Card a extended pin out-going NMI.

5 1 Signal CDET1BN has made a 1-0 transition
since the last time NMI's were cleared.
Card a extended pin in-coming NMI.

6 1 Signal CDET2BN has made a 0-1 transition
since the last time NMI's were cleared.
Card a micro switch out-going NMI.

7 1 Signal CDET2BN has made a 1-0 transition
since the last time NMI's were cleared.
Card a micro switch in-coming NMI.

F6EC 0 0 Timer generates IRQQ's every 54.9 ms,

RW 1 Timer generates IRQQ's every 56.2 s.

00h at Reset 1 0 Reserved always 0.

2 0 SELVDD outpuit low (5 Volts) if FGECh
bit 4 is low.
1 SELVDD output high (3 Volts) if FEECh
bit 4 is low.
3 0 LCDPWRN signal low (display power and
clocks active).
1 LCDPWRN signal high (display power and
clocks disabled).
4 0 SELVDD signal follows the polarity of
FBECh bit 2.
1 SELVDD signal is disabled to high
impedance.
5 0 RWPWRN signal is low (RS-232 driver's
char% F§>ump is enabled).
1 RSPWRN signal is high (RS-232 driver's
charge pump is disabled).
6 1 Stop the processor clock. Must have
reviously been low.
7 1 ets BAUDCLKG signal low (disables the
1.8432 MHz crystal circuit).

FBED 0-1 Oh PHCGLK/PHCLKN will change every 1 ROWCLK's.
1h PHCLK/PHCLKN will change every 2 ROWCLK's.
2h PHGLK/PHCLKN will change every 4 ROWCLK's.
3h PHCLK/PHCLKN will change every 8 ROWCLK's.

2 1 Value will be read from 0062h bit 4.

3 1 Value will be read from 0062h bit 6.

4 1 Value will be read from 0062h bit 7.
5-7 Reserved.

FIG. 5E

5,560,024

Sheet 10 of 14

Sep. 24, 1996

U.S. Patent

§ i i S —— y —
“ 991 SPON "
b9l H €8}~ “
“ 40 010 NO Aeidsi) [«—— | Sdwoo f
m apopy Aedsiq 0} 05 §0109 m
e
181UN07) :
apop dwo 9PON HO
1958y %% 18JUN0Y)
281 2 4 o1 erepdn [
9~ |
Aoy mm_,J :
$5800id uo ”
8LI~) wini m
J8iuno) JOIUN0Y) !
Y9LLNI U9LLNI N !
© 1958y 19say flile) m
/ M !
091 aly A “
951 m
oLi~ | w0l AN @2 NN/_ | !
IAN JEN |
OLINI | |preoghay | [#H4ONO |91 B Jine ugL LN |
A A L) 18yofedsiq AN A A m
yeL~) !
T ;
. 201-1
9 OId A
o1-{ OPOW aindwon 01 05 |

U.S. Patent Sep. 24, 1996 Sheet 11 of 14 5,560,024

Interrupt 16 calls per Interrupt 8

45

40

35

30

25

20

15

10

Lotus 123
1.3 MHz (no graphing)

| TR o

0.054 |5.984]11913[17.842]23771] 20700 Ja5.630 1550 [47 488 5417 [59:346
3.019 8.948 14877 8V 676 V65 B5H M5B 50453 B30

Time (seconds) FIG 7 A

Lotus 123
7MHz (no graphing)

_ I A

11
0.054 | 5.984|11913[17.842]23.71 | 29700 a5 63041380 a7 48 [5317 [50,346
3.019 8.948 14877 2087 75 L6H BIN M5B 50453 B30

Time (seconds) Fl G 7B

U.S. Patent Sep. 24, 1996 Sheet 12 of 14 5,560,024

Alpha Works
2MHz
13
12 2 — —_—
1 _
[}
a 10F
g L |
2.0 I
y |
o T ‘
g or
2 5F
5 4t
2..
1_
. Il
Timer Ticks
FIG. 7C
Alpha Works
3MHz
;
1
I TR ul —
17 _
16

Interrupt 16 calls per Interrupt 8
=)

—r
no

rr 1 rr1r 1ot 11T nrni1t 715 P Tbd
f—

O LN WP TN W

N

Timer Ticks

FIG. 7D

U.S. Patent Sep. 24, 1996 Sheet 13 of 14 5,560,024

Grandview
2MHz

80

60

50

Interrupt 16 calls per Interrupt 8
&
1

10—I J,_ J"'“‘.n I

0.1098 5.5098 11.0898 16.5798 22.0698 27.5598 33.0498 38.5398
Time (seconds) FI G 7E

Grandview
3MHz

120
10 |

3

90 -
80 -
70 |
60 F _—m
50
40 -
30
20 -
10

Interrupt 16 calls per Interrupt 8

I
0.1098 5.5998 11.0898 16.5798 22.0698 27.5598 33.0498 38.5398

FIG. 7F

U.S. Patent Sep. 24, 1996 Sheet 14 of 14 5,560,024

Grandview

7MHz
280

260
240 1
©
s 220
200 |
180

140
120
100 |
80 -
60 -
40 -
20 I

Interrupt 16 calls per Interru

0.109 | 11.089 | 22.069 | 33.049 | 44.029 | 55.009 | 65.989 | 76.969
5599 16579 27559 38539 49519 60499 71.479

Time (seconds)

FIG. 7G

5,560,024

1

COMPUTER POWER MANAGEMENT
SYSTEM

REFERENCE TO PRIOR APPLICATION

This is a divisional application of U.S. patent application
Ser. No. 08/087,249, filed Jul. 1, 1993 (now abandoned)
which is itself a divisional application of U.S. patent appli-
cation Ser. No. 07/436,642, filed Nov. 13, 1989 (now
abandoned), which is itself a continuation in part of U.S.
patent application Ser. No. 07/373,440 filed Jun. 30, 1989
(now abandoned).

REFERENCE TO MICROFICHE APPENDIX

Appendix A, which is a part of the present disclosure, is
a microfiche appendix consisting of 4 sheets of microfiche
having a total of 383 frames. Microfiche Appendix A is a
listing of computer programs and subroutines which imple-
ment a preferred embodiment of the present invention. This
microfiche appendix contains material which is subject to
copyright protection. The copyright owner does not object to
facsimile reproduction of the patent document and appendix
in Patent Office files, but reserves all other copyright rights.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to a power management device and
power management method for a computer. More specifi-
cally, the invention relates to both hardware and software for
a portable battery powered computer which enables the
computer to draw a very small amount of electric power.

2. Description of the Prior Art

Low power hardware and software techniques are well-
known in the field of computing. For instance, hand-held
calculators that use very small batteries and which can
operate for long periods from those batteries are well-
known. However, for general purpose computers such as
IBM PC compatible computers or similar computers, low
power techniques are not well developed. Small computers,
i.e., laptop computers which can operate for several hours
off fairly large batteries, are well known. However, com-
puters which operate for a long period from small batteries
are not known in the art. Specifically, it is not known in the
art to provide such an IBM PC compatible computer.

The original IBM PC computers were designed for a
conventional desktop computing environment. Such com-
puters were meant to draw power from the wall socket.
These computers also typically use electronic circuitry com-
ponents which consume large amounis of electric power.
IBM PC compatible computers also include sofiware (e.g.,
BIOS) which was not designed to conserve power.

The key elements to IBM PC compatibility are the ROM
BIOS (read only memory basic input-output system), the
hardware architecture, and the operating system. One oper-
ating system for an IBM PC compatible computer is MS-
DOS as provided commercially by Microsoft. In order for a
computer 0 be compatible to an IBM PC computer, it is
therefore necessary to adhere very closely to the software
interface standards of Microsoft and IBM. This has disad-
vantages for low power computer management software.

The 8086 (IPX86) family of microprocessors from Intel,
which includes the 8088 and 80X86 microprocessors, is
used in IBM PC-XT compatible computers and includes in
its system RAM (random access memory) an interrupt table.
The interrupt table lists addresses of software routines to

10

15

20

25

35

45

50

55

60

65

2

which a computer program is directed in response to an
interrupt. The IBM PC compatible ROM BIOS and MS-
DOS operating system are controlled through a system of
hardware and software interrupts. Hardware interrupts are
initiated by providing a signal on one of the processor pins.
Software interrupts are initiated when the processor executes
a specific class of instructions known as software interrupts.
These conventional interrupts include in the prior art an
NMI (nonmaskable interrupt) which is not used extensively
in the prior art IBM PC compatible computers.

In the prior art, NMI, that is, nonmaskable interrupts, are
not really nonmaskable, i.e., always active, because they can
be disabled. The software interrupt table in the prior art
includes a number of addresses, i.e., memory addresses. An
address is provided for each interrupt, which points to the
interrupt handler. That is, one address points to a memory
location where the interrupt handler is located. Thus for
every interrupt there is an entry in memory which contains
the interrupt handler entry point.

For application programs that are so-called badly behaved
applications programs, the application program may take
over any particular interrupt. Thus, instead of a particular
interrupt vector table entry pointing to an interrupt handler
as intended, the application program causes an interrupt to
be revectored, that is, reset, to point to another location.
Thus, an application program takes over a particular inter-
rupt by making the particular entry in the vector table point
to the application program rather than to the ROM BIOS or
operating system. Thus the interrupt which is meant to cause
a particular function to be executed is never called because
that interrupt vector table entry has been preempted by the
application program.

In the prior art the software interrupts include parameters
which are passed to particular locations (i.e., registers) in the
microprocessor. The interface into the software interrupts in
the prior art IBM PC compatible computer is defined in a
well-known set of standard published definitions. See for
instance The New Peter Norton Programmer’s Guide to the
IBM PC & PS/2, Microsoft Press. Thus, the values held in
various microprocessor registers may be replaced by appli-
cation writers who use this guide, making for programs
which are badly behaved.

Application programs which are badly behaved not only
preempt ROM BIOS services but they also preempt oper-
ating system services. Thus, one cannot rely on conventional
operating system and ROM BIOS services to monitor what
is occurring in the computer.

Also provided in the conventional IBM PC architecture
are two interrupts which are relevant to computer keyboard
events. Interrupt INT9 is conventionally generated by the
small microprocessor which is typically provided to control
an IBM PC compatible computer keyboard. Thus, Interrupt
INT9 causes information from the keyboard to be put into a
buffer. Interrupt INT16h (h for hexadecimal numbering)
accesses this information from the buffer and provides it to
the program which invoked the software interrupt instruc-
tion. Interrupt INT16h is therefore a software interrupt
which is invoked typically by application software and/or
MS-DOS to make a request to the keyboard services soft-
ware to show status of certain registers such as waiting for
a key to be pressed.

For instance, one event which consumes major time in a
computer program is waiting for a key press on the keyboard
of the computer. For a typical application program running
on a computer such as a spreadsheet or word processing
program, if the computer application program is well-be-

5,560,024

3

haved (as described below) the computer program could
simply issue a request to MS-DOS to wait for the next key.
MS-DOS could in turn simply issue a request to the ROM
BIOS to wait for a key press. The ROM BIOS would then
simply loop until it detected a key press.

MS-DOS does not use this procedure. Looping until a key
press is detected means the application program can not
concurrently perform other functions. Instead MS-DOS uses
a procedure which can be alternatéd with other procedures.
MS-DOS asks the ROM BIOS in the computer if a key has
been pressed. The ROM BIOS includes a buffer for storing
keystrokes as the keys are pressed. MS-DOS loops in this
operation of periodically examining this buffer (with other
MS-DOS processing going on in other parts of the loop).
The ROM BIOS cannot simply shut off the first time this
buffer is examined because this would interrupt other MS-
DOS processing and therefore hang up the machine making
it inoperable.

In fact many MS-DOS applications programs are badly
behaved in that they take over the BIOS and MS-DOS
functions called through the use of software interrupts by
revectoring the interrupt to the application program. Thus,
calls to BIOS provided for by MS-DOS may never be
carried out.

Thus in the conventional IBM PC compatible computer,
it is inherently difficult to perform any software power
management in response to particular MS-DOS or BIOS
operations being carried out by an application program. That
is, if the ROM BIOS interrupt handling routines are not
called, then the conventional MS-DOS operating system
includes no means of implementing power savings tech-
niques in response to loop operations such as looking for key
presses. This means that IBM PC compatible computers are
not generally available for use in systems which use small
batteries unless the batteries are to be replaced or recharged
frequently (i.e., after four or five hours).

Generally the hardware, that is the electronics circuitry, in
an IBM PC compatible computer is not typically conserving
of electric power either. That is, the computer circuitry
typically operates, i.e., draws power, even when it is not
actually in use. This further contributes to high power
consumption by such a computer.

The above disadvantages of IBM PC compatible comput-
ers also apply in many respects to non-IBM PC compatible
computers such as computers sold by Apple or other com-
panies which are not necessarily IBM PC compatible. Like-
wise, the problem of bypassing MS-DOS commands exists
for bypassing commands in other operating systems such as
Unix and OS/2 for example (Unix is a registered trademark
of American Telephone and Telegraph Company and OS/2 is
a registered trademark of International Business Machines
Corporation). Again, these other computers were designed
for use in a desktop environment where power is provided
readily from a wall socket. Therefore in general, typical
personal computers do not have power conservation features
as a basic element.

SUMMARY OF THE INVENTION

In accordance with the invention, a power management
system device and method are provided for a computer. In
accordance with the invention, the computer operates in
various modes. In each of the modes, particular hardware
elements of the computer are disabled. These elements are
enabled as needed. The modes are controlled by both the
computer hardware and software so that to the user the

10

15

20

25

30

35

45

50

55

60

65

4

computer appears to be functioning as if all of the hardware
elements were enabled at all times. Thus the operation of the
computer in terms of the power management system
requires no modification of applications software and is
generally transparent to the user.

In the preferred embodiment the computer is compatible
to the IBM PC-XT computer and has an 80C88 micropro-
cessor as the central processing unit. In the preferred
embodiment the computer is powered by two small batter-
ies. The computer operates many hours from these batteries.

In accordance with the preferred embodiment of the
invention, the power management system of the computer
includes a number of features. In order to conserve power
and extend the battery life of the computer, the computer
circuitry is partitioned into sections preferably based on the
need for clock signals of particular frequencies. The sections
are partitioned according to the particular timing signal (i.e.,
clock) frequencies that are required to operate each section.
The sections are also partitioned based on those which
require constant clock signal input versus those which only
require clock signals during certain modes of operation.
When there is no demand for a given clock frequency (as
typically generated by an oscillator), the oscillator is pref-
erably disabled to conserve power. The main system clock is
stopped when a control program determines that software
currently being processed by a microprocessor is in an idle
state. An idle state exists when the main system clock which
runs the microprocessor can be stopped without delaying
output to a user of the computer and the program.

The computer in accordance with the invention is pro-
vided with an enable feature for the starting and stopping of
the main system clock (i.e., timing signal generator). Also
included is a state controller to ensure orderly starting and
stopping of the main system clock. The state controller
manages the oscillator which provides the main system
clock signal, thus ensuring that start and stop requests are
fulfilled without allowing any imperfect clock pulse, i.e., a
“glitch,” to reach any logic circuitry.

The state controller stops the main system oscillator upon
receipt of a so-called sleep request signal. This request
signal comes from a bit in a particular register accessible to
the microprocessor of the computer. When this bit is set, the
microprocessor “clock” is stopped on the next falling edge
of the main system clock signal.

The state controller will also stop the main system oscil-
lator in a similar fashion when the state controller detects a
request to inject an external processor clock signal (such as
from a computer peripheral device). This stops the internal
main system clock in a “glitch free” fashion, i.e., no imper-
fect clock signals are generated. The external clock source is
synchronized with a slower clock source, then gated through
to the microprocessor of the computer and other logic in the
computer.

The microprocessor clock is preferably stopped in the
middle of an input/output write instruction, which ensures
that all the microprocessor address, data, and control signal
lines are in a known state when the microprocessor clock is
stopped. This prevents inputs to the microprocessor and
other circuitry from oscillating unnecessarily, without any
need for provision of external pull-down or pull-up resistors.
The elimination of these resistors is desirable because they
undesirably consume power.

The state controller will preferably start the main system
clock oscillator and, after allowing sufficient time for the
main system clock oscillator to stabilize, will synchronize it
with a slower clock and gate the clock to the microprocessor
when a wake-up request is received by the state controller.

5,560,024

5

Wake-up requests may come in the form of a timer
interrupt, a keyboard interrupt, a UART (universal asyn-
chronous receiver transmitter) interrupt or any event which
generates a nonmaskable interrupt (NMI). A request to
switch from the external processor clock source back to the
internal main system clock is also handled in this manner.
The wake-up requests are all maskable by manipulating the
appropriate bits in a particular register accessible to the
MiCTOProcessor.

In addition, 2 DMA (direct memory access) controller
clock timing signal is also derived from the main system
clock signal. Circuits are provided to gate the main system
clock to the DMA circuits as needed, including during DMA
cycles, system reset, and any input/output operations of
DMA control registers.

In accordance with the preferred embodiment of the
invention, other clock signals are provided to the UART,
which provides serial communications to and from the
computer. Another clock signal is provided for the computer
display, in order to provide signals for the circuitry which is
used to refresh the video display of the computer. Also, a low
frequency clock signal is provided which is used in various
parts of the computer system.

In accordance with the preferred embodiment of the
invention, the microprocessor may be stopped between
successive keypresses on the keyboard. The microprocessor
is stopped after unique software determines that the appli-
cation program has responded to the previous keypress and
is not performing a computation but is merely waiting for
another keypress. The microprocessor is started again in
response to the next keypress. Stopping is accomplished
preferably by means of software as described in more detail
below. Stopping the microprocessor (i.e., not clocking the
device) saves power. When the microprocessor is running
(i.e., receiving clock signals), power is consumed by the
processor itself as well as the memory provided in the
system. The processor consumes power when it is receiving
clock signals because these clock signals cause electrical
elements within the device to switch. These elements con-
sume much more power when switching than when they are
static. Additionally, memory devices consume more power
when they are read from or written to than when they are idle
and not being selected.

The preferred embodiment of the invention includes soft-
ware which can save power even with so-called badly
behaved application software programs. As described above,
these badly behaved programs seize control of the hardware,
BIOS, and operating system interrupts in contravention to
the usual conventions.

In accordance with the preferred embodiment of the
invention, circuitry in the computer triggers software events
through the use of nonmaskable interrupts (NMlIs). The NMI
is used as a matter of convenience; in other embodiments,
other interrupts are used, or other means of interrupting
instruction flow such as a bus controller altering instruction
provided to the microprocessor. In accordance with a pre-
ferred embodiment of the invention, substantial use is made
of the NMI, which is conventionally provided in the com-
- puter but typically not extensively used in IBM PC-XT
compatible computers. The NMI is used in accordance with
the preferred embodiment of the invention because it has a
higher priority than most of the other interrupts. Thus a
common entry point is provided for the hardware to signal
to the software that any one of a number of events could
have occurred.

Also provided in one embodiment of the invention is a
trap which detects when the microprocessor will be sent a

10

15

20

30

35

50

55

60

65

6

particular interrupt. Provision of this trap means that novel
hardware and software can now have control over what is
happening in the computer in spite of badly behaved appli-
cations programs, This is because the novel system software
detects particular hardware and software events, that is,
particular interrupts generated by hardware (for example,
key presses or communication bits coming to a communi-
cations port) or software (for example, an application pro-
gram looking for key presses or communication bits).

Thus, in accordance with the invention, before an inter-
rupt generated by an applications program or by external
hardware is allowed to cause processing, instead the BIOS
itself may assume control and engage in preprocessing
activity. In the preferred embodiment of the invention this
preprocessing activity allows the BIOS to determine if the
computer should go into a low power consumption mode.

The invention thus has the advantage of providing a
portable computer which draws extremely low amounts of
electric power. The computer is compatible with IBM PC-
XT application programs and executes such programs with-
out any need to modify the program. In the preferred
embodiment of the invention, this advantage is provided by
means of particular hardware and software.

A general description of the computer in the preferred
embodiment, is in commonly assigned U.S. patent applica-
tion Ser. No. 07/375,721, now abandoned, entitled Portable
Low Power Computer, attomey docket no. M-968, incorpo-
rated herein by reference.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a state diagram of power modes in accor-
dance with the preferred embodiments of the invention.

FIG. 2 shows in block diagram form the sectional power
management circuitry in accordance with the invention.

FIG. 3 shows in block diagram form circuitry in accor-
dance with the invention.

FIG. 4 shows in block diagram form further circuitry in
accordance with the invention.

FIGS. 5A to 5E show a port map in accordance with the
invention.

FIG. 6 shows a flowchart of the low power management
software.

FIGS. 7A through 7G show patterns of interrupt call
frequency which occurred in three representative application
programs operating under a variety of conditions.

Identical reference numbers in various figures denote
identical or similar structures.

DETAILED DESCRIPTION OF THE
INVENTION

Description of the Power Mode State Diagram

FIG. 1 shows a state diagram of the power modes pro-
vided in the preferred embodiment of the invention. Two
compute modes 10 and 11 are shown in the center portion of
the figure. In low-volt compute mode 10, the computer
draws about 120 milliwatts of power, shown in FIG. 1 as
“120 mw”. This and other numerical specifications pre-
sented herein are illustrative estimates and not critical to the
invention. In compute mode 10, the VCO (i.e. the voltage
controlled oscillator, not shown) which provides the main
system clock signal is on. The video display (not shown) of
the computer, i.e. the computer screen, is also on. The UART
(not shown) and the DMA clock (not shown) are off, that is,

5,560,024

7

not being clocked. The VCO is powered at a low voltage, in
the range of 2 to 3 volts, and thus provides a low clock
speed, on the order of 2 MHz, to the microprocessor. For
many activities, for example responding to data entry during
word processing, a low clock speed responds to the user as
well as a higher clock speed responds, and consumes con-
siderably lower power.

If a user makes demands on the computer for considerable
processing, it is desirable to use a higher clock speed.
Therefore if the computer has remained in compute mode 10
for longer than a specified time, currently preferred at 1.5
seconds, the computer moves to a higher voltage 5-volt
compute mode 11, in which the VCO operates at about 7
MHz. As in compute mode 10, the video display is on, the
UART is off and the DMA clock is off. Processing is
completed at a faster rate in compute mode 11.

All other states are accessible directly or indirectly from
one of these compute modes. The computer passes from
compute modes 10 to off mode 12 under two conditions. The
first condition is when the on/off switch (not shown) of the
computer is switched. The second condition is a “timeout”
condition. The timeout means that there has been no activity,
i.e. computation or keyboard activity for a relatively long
time. This time is preferably several minutes and is prefer-
ably programmable, as described below. The computer can
be changed from compute mode 11 to off mode 12 in the
presence of heavy processing by pressing the on/off switch.
Upon again pressing the on/off switch, the computer will
return to the same point in the processing.

In the off mode 12, the computer draws about 1.5 milli-
watts of power. In the off mode 12, the VCO is off, the
display is off, the UART is off, and the DMA is off. But the
computer is not truly off because it can respond to pressing
of the on/off switch and returns to compute mode 10 at the
same point in a program which was being executed when the
computer was turned off. The computer passes from off
mode 12 to compute mode 10 when the on/off switch is
switched by the user.

The time update mode 14 is reached only from the off
mode 12. However, the time of day is maintained in all of
the various modes of the system. In the off mode, periodi-
cally when a timer tick (derived from a low frequency clock
as described below) is provided by the timer circuitry (not
shown) in accordance with the invention, the computer
passes from the off mode 12 to the time update mode 14. In
the time update mode 14 the computer draws approximately
70 milliwatts of power. The computer is only in the time
update mode 14 for a very brief time, long enough to update
the time keeping functions of the computer. In the time
update mode 14 the display, UART, and DMA are all off.

The time of day is updated by the timer which is derived
from a low frequency clock as described below. When the
update of the time of day has been completed the computer
passes from the time update mode 14 back to the off mode
12.

The computer passes from the compute mode 10 to the
display mode 16 based upon the occurrence of particular
hardware inputs. These hardware inputs, as described below,
include: the interrupt INT16h trap, keyboard activity, i.e.,
the user typing on the keyboard, and timer ticks. These
inputs are used to determine if the operating system or
applications program is in an idle state and therefore waiting
for user input. If it is determined that the program is waiting
for user input, the computer passes from compute mode 10
to display mode 16. In the display mode 16, the computer
draws approximately 50 milliwatts of power. Thus when the

10

15

20

25

30

35

40

45

50

55

60

65

8

computer is in the display mode 16 the microprocessor itself
is not running (i.e., not being clocked). These same events
can move the computer from S-volt compute mode 11 to
display mode 16. The computer passes from display mode
16 to compute mode 10 as a result of a keyboard activity
(i.e., the user presses a key) or a timer tick. The computer,
when in use, frequently passes from compute mode 10 to
display mode 16 in order to conserve the relatively large
amount of power used in compute mode 10. Thus most of
the time when the computer is used it is in display mode 16,
and the microprocessor is not running even though the
display is on. In the display mode 16 the VCO is off, the
display is on, the UART is off, and the DMA is off.

The computer also passes from the compute mode 10 to
and from the DMA (direct memory access) mode 18. In
DMA mode 18 the computer draws approximately 150
milliwatts of power. The computer passes from compute
mode 10 to DMA mode 18 upon receipt of a DMA request.
When the DMA processing is completed the computer
passes from DMA mode 18 back to compute mode 10. In
DMA mode 18 the VCO is on and operating at approxi-
mately 2 MHz, the display is on, the UART is off, and the
DMA clock is on.

Similarly from compute mode 11, the computer passes to
DMA mode 17. In DMA mode 17, the VCO is on and
operating at approximately 7 MHz, the display is om, the
UART is off, and the DMA clock is on. In DMA mode 17,
the computer draws approximately 450 milliwatts of power,
the higher power being a result of the higher voltage of the
system power supply and the higher switching speed result-
ing from the higher VCO speed.

The computer also passes from compute mode 10 to and
from communications mode 20. For simplicity, these paths
are not shown in FIG. 1. As is shown, the computer also
passes from compute mode 11 to and from communicate
mode 20 in response to a request to access the UART, and
completion of the UART access, respectively.

When the computer first enters communicate mode 20,
the voltage is at the higher level, causing the VCO to operate
at the 7 MHz speed. Upon detection of a loop activity
(explained more fully later), the computer may be pro-
grammed to move to communicate and display mode 24, in
which the VCO is turned off, thereby saving power. Com-
municate and display mode 24 uses only 100 milliwatts of
power. In one embodiment this is the mode occupied by the
computer the majority of the time a user is sending or
receiving a file by modem. The computer passes from
communicate mode 20 to communicate and display mode 24
upon similar conditions for which it moves from compute
mode 10 or 11 to display mode 16.

From communicate and display mode 24, a request to
access the UART causes the computer to move to low
voltage communicate mode 21, in which the VCO is turned
on but operates under the low voltage, at approximately 2
MHz. In communicate mode 21 the UART and display are
turned on. If there is a stream of bits which lasts longer than
a specified time, on the order of 50 milliseconds to a few
seconds, the computer moves to 5 volt communicate mode
20. Otherwise, upon completion of the UART access, the
computer returns to communicate and display mode 24.

The computer reaches the communicate and DMA mode
22 only from the communication mode 20. In the commu-
nicate and DMA mode 22 the computer draws approxi-
mately 500 milliwatts of power. The computer passes from
the communicate mode 20 to the communicate and DMA
mode 22 upon receipt of a DMA request when in commu-

5,560,024

9

nicate mode 20. When the DMA request is done the com-
puter passes back to communicate mode 20. In the commu-
nicate and DMA mode 22 the VCO is on, the display is on,
the UART is on and the DMA is on.

Description of Sectional Power Control on Demand

In accordance with the invention, a feature called sec-
tional power control on demand is provided. This feature
provides that each section of the computer may be powered
up only as needed. The sections are powered up accordance
with the state diagram as shown in FIG. 1. FIG. 2 shows in
block diagram form the circuitry associated in the preferred
embodiment of the invention with the sectional power
control on demand feature. The object of this feature is to
isolate portions of the computer circuitry (i.e., hardware)
which can be powered independently. Thus power is applied
only to each section when needed, leaving each section
powered down (i.e., turned off) when it is not needed.
Powering down sections of the computer when inactive
increases the life of the batteries.

In one preferred embodiment, three portions of the com-.

puter, the display, the communication channels and the CPU,
have independent controls allowing them to be powered up
or clocked as needed. In the preferred embodiment of the
invention, both hardware and software together determine
electric power demand and manage these independent con-
trols.

First, for the display, the power supply circuit 32 as shown
in FIG. 2 can be turned off. Also, the LCD driver chips 36
which drive the actual display 70 can be disabled. The clock
oscillator 38 for the display can be disabled. The software
performs the above functions by controlling a bit in a
particular regisier FGEC<bit 3> accessible to the micropro-
cessor 40 in the computer (see port map, FIG. 5E). Second,
for the serial communications portion of the computer, the
power supply circuits (not shown) can be disabled by
register FGEC<bit 5>. Also the oscillator (not shown) which
generates a timing signal for the UART 44 can be disabled
by register FGEC<bit 7> (see port map, FIG. 5E). Third, the
clock for controlling CPU 40 can be turned off, as discussed
above, thereby not switching transistors which respond to
the software being executed if the software is in an idle loop.

An alternative embodiment includes at least one memory
card 48, 50 which provides the nonvolatile memory. A
power pin 48B, 50B of each memory card 48, 50 is con-
trolled, allowing a computer power supply (not shown) to
provide power to memory chips (not shown) which are
internal to each memory card 48, 50. A fourth portion of the
computer comprising the memory cards may also be pow-
ered up only as needed. Two memory cards 48, 50 are
shown; others may be provided. The power to each memory
card 48, 50 is turned off by a solid state switch 48C, 50C.
The switches 48C, 50C, one of which is provided for each
memory card 48, 50 are controlled automatically based on
an address decode, or are controlled by a bit in a particular
register accessible to the microprocessor 40. The memory
cards 48, 50 as used in the preferred embodiment of the
invention are described in commonly assigned U.S. patent
application Ser. No. 07/374,691, now abandoned entitled A
Method and Apparatus for Information Management in a
Computer System, attorney docket No. M-951, incorporated
herein by reference.

As shown in FIG. 2, the CPU 40 (i.e., the central
processing unit or processor, preferably a microprocessor),
is connected to address lines 52, data lines 54, and control

10

15

20

30

45

50

55

60

65

10

lines 56 which carry signals for deceding valid addresses.
The microprocessor 40 is connected by these lines 52, 54, 56
to the address decode logic and specific registers circuitry
60. The circuitry 60 as shown includes all the logic needed
to decode addresses in the microprocessor 40. Some
addresses cause enable and select signals during a micro-
processor instruction processing cycle. Other addresses cor-
respond to specific ports accessible to the microprocessor 40
(see port map, FIG. 5). When a specific port address is
decoded along with an instruction to perform an input/output
write, then the microprocessor data is latched into a register,
which is referred to as a specific register. If the operation is
a read operation, then this logic circuitry 60 gates the
appropriate data onto the microprocessor bus, i.e., the data
line 54 to the microprocessor 40.

Display Power Management

The display controller logic circuitry 62 includes ali the
logic which allows the computer to emulate the conventional
IBM PC computer compatible display standards known as
MDA and CGA described in The New Peter Norton Pro-
grammer’s Guide to the IBM PC & PS/2. This circuitry 62
also generates the clock timing signals 64 needed by the
display LCD driver circuitry 36 from the display clock
signal 66 provided by the oscillator 38 for the display clock.
The oscillator 38 for the display clock is the actual oscillator
which generates the timing for the display clock signal 64.
The power control signal 68 for the display 70 enables the
oscillator 38 for the display clock signals 64.

The LCD drivers 36 are the driver circuits which demul-
tiplex the data from the display controller logic circuitry 62
and present the row and column data 72 to the LCD display
glass 70. The LCD display glass 70 is the actual LCD
physical display which the user of the computer views. The
LCD drivers 36 are powered by the display power supply 32.
See commonly assigned U.S. patent application Ser. No.
07/374,340, which is now U.S. Pat. No. 5,130,703, entitled
Power System and Scan Method for Liquid Crystal Display,
invented by John Fairbanks, Andy E. Yuan, and Lance T.
Klinger, attorney docket no. M-806, incorporated herein by
reference. The display power supply 32 is a switching power
supply which generates all the necessary voltage levels to
drive the LCD display glass 70. The display power supply 32
is controlled by a display power control signal 74 provided
from the address decode logic and specific registers circuitry
60. The display power control signal 74 thus turns off the
display power supply 32 when the display is not in use. The
LCD display glass 70 receives demultiplexed row and
column data 72 from the LCD drivers 36, and obtains its
power 68B from the display power supply 32.

Communication Power Management

The UART 44 produces TTL (transistor-transistor logic)
voltage level signals 80 which are translated so as to
conform to conventional communications standards such as
RS-232-C. The UART 44 also requires that incoming data be
translated back to TTL voltage levels. The serial channel
voltage level translator circuitry 82 accomplishes this func-
tion. The serial channel voltage level translator 82 translates
voltage levels between those of one of the conventional
communications standards 84 as described above and TTL
voltage levels 80. The non-TTL voltage levels 80 are gen-
erated by the serial channel voltage level translator circuitry
82 using switching techniques as is conventional. The power
supply of translator 82 will operate only when enabled by

5,560,024

11

the serial communications power control signal 86, which is
preferably under software control as a specific register bit
F6EC<7 bit> (see port map, FIG. 5E).

The external serial connector 88 is a connector preferably
located externally to the case of the computer. This connec-
tor 88 connects serial devices to the computer. All signals 84
at this connector are non-TTL and require translation of
voltage levels before reaching the UART 44.

Memory Card Power Management

In one embodiment, a solid state switch 48C, 50C controls
the power pin 48B, 50B of each of the memory cards 48, 50
as described above. An enable signal 48D, 50D, derived
from decoding of memory addresses by the address decode
and specific register circuitry 60, or by a bit in a specific
register (see port map, FIG. 5D) controls the solid state
switches 48C, 50C. The enable signal 48D, 50D turns power
on to a memory card 48, 50 only when that particular
memory card is to be accessed.

The above described circuitry is controlled by a control
program executed by the microprocessor 40, i.e., the CPU.
This control program is preferably an assembly language
microprocessor program. Further details of the operation of
this control program as it pertains to power management are
provided below. Hereinafter follows a brief description of
the operation of this control program.

With regard to the display power supply 32, the control
program detects either a user request to turn the computer off
(by means of an on/off switch) (not shown) or detects
inactivity (i.e., an idle state) of the computer over a period
of time. A particular bit is changed in a specific register
accessible to the microprocessor 40 turning off the display
related circuitry register FGEC<bit 3> (see port map, FIG.
5E). The control program detects either a user request to turn
the system on (by means of the ON/OFF switch) or a
programmed event which is to turn the system on.

With regard to the serial communications power supply
software, usage of the UART 44 is detected either by a
service request to the control program or by an interrupt, as
described below. A particular bit is changed in a specific
register FGEC<bit 5> accessible to the microprocessor 40
turning on the circuitry related to communications (see port
map, FIG. 5E). The termination of communications services
by the user of the computer is detected either by a request to
the control program or by detecting a lack of communica-
tions activity. A particular bit is changed in a specific register
F6EC<bit 7> accessible to the microprocessor 40 turning off
the hardware circuitry relating to communications (see port
map, FIG. SE).

For the memory card power supply, memory card 48, 50
access by the computer is detected either by a service request
to the control program or automatically through address
decoding. If the automatic mode is not in use, then a
particular bit is changed in a specific register accessible to
the microprocessor 40 thus turning on power to the memory
card 48, 50 for the duration of the access to the memory card.

Schematic diagrams for the circuitry described in this
patent disclosure are included in commonly assigned U.S.
patent application Ser. No. 07/375,721, now abandoned,
attorney docket no. M-968, entitled Portable Low Power
Computer, incorporated herein by reference. Flow charts for
the power management related events are shown here in
FIGS. 3 and 4. FIG. 3 shows hardware events which cause
the microprocessor clock to turn on or off and FIG. 4 shows

10

20

25

35

45

50

55

60

65

12

software events which cause the microprocessor clock to
turn off or prevent turning off the microprocessor clock.

Description of the Hardware Activity Circuitry

In the preferred embodiment of the invention, in order to
conserve power and extend the battery life of the computer,
the hardware of the computer, i.e., the circuitry, as described
above is partitioned into sections based on the need for clock
signals. The oscillators which provide the clock signals to
different portions of the computer are enabled and disabled
based upon the demand for their services. Disabling an
oscillator when it is not needed conserves power. In accor-
dance with the invention, those oscillators which are dor-
mant, i.e., disabled at a particular time, are started in a
fashion so as to be glitch free, that is to provide clock signals
only when stable. Disabling an oscillator when it is not
needed thus conserves power. Since the oscillators take a
period of time after being turned on to stabilize, circuits are
provided to start the oscillator, then wait an appropriate
amount of time before allowing the oscillator signal to reach
any of the logic circuitry which it drives. For the oscillator
which generates the timing signal for the microprocessor
clock, a voltage controlled oscillator is provided having a
frequency which is a function of the system power supply
output voltage. Thus since the power supply voltage is under
software control, the microprocessor clock frequency is also
under software control.

Detecting whether the computer is in an idle state is
important when determining if it is appropriate to stop the
clock signal to the microprocessor. The computer processor
40 is in an idle state when it is not acting upon user generated
input. In order for the control program in the microprocessor
to differentiate between an idle state and an active state, the
microprocessor control program must have knowledge of
hardware activity. Circuitry is provided in accordance with
the invention to monitor the computer circuitry (see FIG. 2)
and alert the control program by way of an interrupt when
particular hardware events occur.

In one preferred embodiment of the invention, four hard-
ware events are monitored by the control program and
appear to the contro]l program as nonmaskable interrupts
(NMIs). These four hardware events are the system timer
tick, keyboard activity, communications port activity, and
on/off switch activity.

FIG. 3 shows a block diagram of hardware events moni-
tored by the power management control program of the
present invention.

As in conventional MS-DOS compatible computers, pro-
grammable interval timer 107 is provided for generating
timing signals for which the interval can be programmed.
According to the present invention, a second timer 98 is
provided for use by the power management system of the -
present invention which can be programmed to generate a
timer tick 100 at predetermined intervals. The timer tick 100
is used as a time reference and a watchdog timer. The timer
tick 100 provides periodic ticks 100 which are treated by the
BIOS as nonmaskable interrupts (NMIs) which are used by
the BIOS (basic input output system) control program in
maintaining control of the system despite badly behaved
application programs, such as word processing or spread
sheets, running on the computer.

The presence of keyboard activity causes most keystrokes
to be stored in a buffer until acted upon by the software.
Typically the application program cycles periodically
through a loop which includes looking for keyboard activity

5,560,024

13

(looking for entries in the keyboard buffer). For example, if
an application program is loading a large file onto disk or
other mass storage memory, the program may also periodi-
cally look for pressing of certain keys so that the user has the
opportunity to stop the operation of writing to memory
before the operation is complete. Such opportunities for the
user to interrupt the program while it is performing other
functions are commonly provided in application programs.
At other points in a program, there may be no other functions
happening except that the program is waiting for a key-
stroke.

Since the microprocessor speed is typically much greater
than the typing speed of the user of the computer, it is
desirable to conserve power by stopping (i.e., not clocking)
the microprocessor between keystrokes when the user is
typing and the program is performing no other function
except processing the response to the typing, which typically
occurs in a small part of the time between keystrokes. In this
situation, the software is in an idle state, that is, the micro-
processor can be stopped without delaying the computer’s
response to a user. In order for the computer to stop and
restart the microprocessor, the computer must include hard-
ware to restart the microprocessor in response to an external
event. The microprocessor goes into the compute mode as
described above, as a result of a keypress.

Note that in the preferred embodiment of the invention the
so-called power on/off switch 114 does not actuaily turn
power on and off but merely provides information to the
control system. Since the computer itself is always powered,
there is preferably no conventional power switch. Instead the
computer is provided with a switch which the user uses to
toggle between the off and on states. In the off state the
display is off, keystrokes are ignored, the processor is
stopped and timer ticks occur at long (i.e., about one minute)
intervals. However the computer itself is not truly off. An
NMI can be generated when the on/off switch is switched off
so that the control program will know that the user wishes
to toggle the computer from the off to the on state. Pressing
the on/off switch when the computer is switched off causes
the computer to move to the compute mode.

As shown in FIG. 3 in block diagram form, the circuitry
of the preferred embodiment of the invention operates as
follows. A nonmaskable timer interrupt 100 (NMI) is pro-
vided by a low frequency oscillator connected to timer 98
which is always running (as long as the batteries are
installed). The frequency of the low frequency oscillator is
divided down and can generate interrupts either every 54.9
milliseconds or approximately every minute. The choice of
the interrupt timing interval is programmable. An interrupt
timing interval shorter than 54.9 milliseconds allows faster
cutofl of the microprocessor clock in response to an idle
state, with a consequent saving of power. However, the
interval should be long enough that multiple events indicat-
ing idle activity can be observed within a single interval.

Two interrupts can be generated as a resuit of this divided
frequency. The first interrupt is designated IRQOQ, and is
compatible with the standard IBM PC timer interrupt which
is connected as the highest priority interrupt (IRQ0) on an
8259-compatible interrupt controller. As shown in FIG. 3, a
standard IBM compatible programmable interval timer 107
generates this IRQQ interrupt, which is sent to 8259 interrupt
controller 105, which in tum sends interrupt 103 to the
interrupt port of CPU 40. This interrupt is maskable and
compatible to that in the conventional IBM PC-XT com-
puter and is used by programmers to implement such
functions as updating the time-of-day clock and initiating
any software activities which are programmed to respond to

10

15

20

25

35

45

50

55

60

65

14

the timer tick. The second interrupt is a power management
timer interrupt 100. Although this interrupt 100 can be
generated from the same timer 107 as used to generate the
IBM. PC compatible interrupt IRQ@, the preferred embodi-
ment uses a second power management timer 98 to generate
interrupt 100. This provision of a second timer allows the
timer interval of timer 98 to be varied by the control program
of the present invention while the interval of IBM compat-
ible timer 107 is varied by programmers of IBM and DOS
compatible computer programs.

This timer interrupt 100 is read by NMI interrupt con-
troller 101 as a nonmaskable interrupt. NMI interrupt con-
troller responds to interrupt 100 by sending a nonmaskable
interrupt 102 to the NMI port of CPU 40. This interrupt 102
takes priority over the 8259-compatible interrupt. This inter-
rupt 102 has an indicator bit in a particular register FGE7<bit
6> accessible to the microprocessor 40 to allow software to
determine that a timer 100 interrupt was the cause of the
nonmaskable interrupt 102 (see port map, FIG. 5C). The
timer interrupt 100 can be programmed to automatically
start the clock (not shown) to the microprocessor 40.

Another type of interrupt is the keyboard interrupt. When
the keyboard circuits are enabled and scanning the keyboard,
a signal is generated by keyboard control circuitry 106 any
time that a key is pressed, released, or pressed long enough
for an antomatic repeat. Two interrupts are generated when
keyboard activity is detected. The first interrupt is desig-
nated IRQ1. This is the conventional IBM PC-XT keyboard
interrupt which is connected in a conventional IBM PC-XT
computer as the second highest priority interrupt IRQ1) on
the 8259 interrupt controller. As shown in the embodiment
of FIG. 3, the IRQI interrupt generated by keyboard control
circuitry 106 is provided to 8259-compatible interrupt con-
troller 105, This interrupt is maskable by the 8259-compat-
ible interrupt controller 105 in response to a masking signal
(not shown) equivalent to interrupt masks 110 and is IBM
PC-XT compatible. If enabled, interrupt IRQ1 causes inter-
rupt controller 105 to send an interrupt 103 to CPU 40.

The second interrupt is the keyboard NMI interrupt 104.
It is necessary to provide a separate interrupt to interrupt
controller 101 which does not pass through CPU 40 so that
keyboard activity can be detected when CPU 40 is not being
clocked, so that the clock to CPU 40 can be turned on in
response to a key press. Further, certain keys are provided
for which the IRQ1 interrupt is not responded to. For
example, a key combination for controlling screen bright-
ness generates a keyboard interrupt 104 which causes NMI
interrupt controller 102 to turn on CPU 40. But this particu-
lar key combination when read by CPU 40 initiates other
hardware activity for controlling screen brightness and does
not cause 8259 compatible interrupt controller 105 to gen-
erate an interrupt 103 to CPU 40. Interrupt controller 101
responds to a keyboard NMI interrupt 104 by generating an
NMI 102. This interrupt 102 takes priority over the 8259-
compatible interrupts 103 and places an indicator bit in a
particular register (F6E7<bit 7>) accessible to microproces-
sor 40 to allow software to determine that a keyboard
interrupt 104 was the cause of the NMI (see port map, FIG.
5D). The keyboard interrupt 104 can be programmed to
automatically start the clock to the microprocessor 40.

In the embodiment of FIG. 3, power management can also
respond to activity on the communications port of the
computer. UART controller 109 In response to activity on
the communications port, in addition to generating IBM
compatible interrupt signal IRQ4, which causes 8259-com-
patible interrupt controller 105 to generate CPU 40 interrupt
103, UART controller 109 generates a UART NMI 117,

5,560,024

15

which causes NMI interrupt controller 101 to generate NMI
interrupt 102 which restarts the clock to CPU 40. This ability
to restart the CPU clock in response to UART activity allows
the CPU clock to be turned off between bytes of information
coming to or from the external port of the computer.

The on/off switch 114 when pressed generates an NMI
116. An indicator 112 is provided in a particular register
F6EA<bit 0> accessible to the microprocessor 40 to indicate
that the on/off switch 114 was the cause of an NMI (see port
map, FIG. 5D). An indicator 112 is also provided in a
particular register accessible to the microprocessor 40 to
indicate the current state of the on/off switch 114. The on/off
switch interrupt 116 can be programmed to automatically
start the processor 40 clock.

The above described circuitry operates with the following
software features. As shown in FIG. 3, timer interrupt 100 is
presented to interrupt controller 101, and does not interfere
with application programs which use the IRQO interrupt. In
another embodiment, not shown, the timer interrupt is
presented on the IRQO pin of the 8259-compatible interrupt
controller 101 and is IBM PC compatible. In this case, timer
interrupt 100 may be used for determining the time of day
as well as responding to other application program com-
mands. In the embodiment of FIG. 3, the timer tick 100
interval is programmable to switch between the IBM PC-XT
compatible 54.9 millisecond time interval and a one minute
(approximately) time interval for power management and is
not accessed by application programs. When the computer is
in the off mode, the one minute interval is more desirable
because it causes less processor 40 activity and thus less
power consumption. The timer interrupt NMI 100 may be
enabled by changing a particular bit in a register (F6E9<bit
4>) accessible to the microprocessor 40 (see port map, FIG.
SD). The timer interrupt 100 can be used by the control
program to maintain command of the system even if an
application program being executed revectors the timer
interrupt IRQO.

With regard to the keyboard interrupt circuitry 106,
interrupts 104 presented on the IRQ1 pin of the 8259-
compatible Interrupt Controller 105 are IBM PC compatible
and may be used for keyboard services (responding to key
presses). The keyboard interrupt NMI 104 also can be used
by the control program to maintain command of the system
even if a program revectors the service routine for the
8259-compatible Interrupt Controller 105. In order to con-
serve power, the microprocessor 40 clock may be stopped
when it has been determined that a program is waiting for
keyboard input. When an NMI 104 is generated as the result
of keyboard activity, the processor 40 clock will restart again
and the control program can allow processing to continue.

With regard to the on/off switch 114, once a user has
finished using the computer for a period of time, the user can
signal the control program that the user is finished by
activating the on/off switch 114. When a user wishes to use
the computer, he may activate the on/off switch 114 request-
ing the control program to start up the computer and resume
exactly where he left off his previous usage. When the
switch 114 is activated, an NMI 116 is generated as
described above. An NMI routine is provided which will
then determine that the on/off switch 114 caused the inter-
rupt by examining the appropriate indicator 112 bit in a
register F6EA <bit 0> accessible to the microprocessor 40
(see port map, FIG. SD). The NMI routine then debounces
the switch by repeatedly examining the real time status of
the on/off switch 114 located in the particular register
accessible to the microprocessor 40 until the signal is stable.
Once the switch 114 has been debounced, the control

10

15

25

30

35

45

50

55

60

65

16

program can move the system between the off and compute
modes.

With regard to FIG. 3 as described above, the micropro-
cessor 40 address lines 54, data lines 52 and control lines 56
are used to decode valid addresses for the circuitry as shown.
The address decode and specific registers 60 include all the
logic to decode the microprocessor addresses. Some
addresses are used as interrupt masks 110. Other addresses
correspond to status indicators 112 which the microproces-
sor 40 can read to determine the source of the interrupt. With
regard to the interrupt controller 101, only those interrupts
associated with power management are shown in FIG. 3.
The interrupt controller 101 monitors all interrupt sources. If
an interrupt 100, 104, 116 or 117 takes place then an NMI
102 is generated only if the interrupt 100, 104, 116 or 117
has been enabled as indicated by interrupt masks 110. The
NMI interrupts 100, 104, 116, and 117 are enabled by
changing the appropriate bits in a specific register such as
F6E8 and F6E9 accessible to the microprocessor 40 (see
port map, FIG. 5D). If an interrupt 100, 104, 116 or 117 is
enabled and does occur, the source of the interrupt can be
determined by examining the interrupt indicators 112 pro-
vided to the interrupt controller 101 through specific regis-
ters 60 accessible to the microprocessor 40.

With regard to the timer 100, this is the above mentioned
system timer used for determining time of day and watchdog
timer functions. The interrupt controller 101 may be pro-
grammed to cause an NMI 102 for each tick 100 of the timer
98. With regard to the keyboard control 106, the interrupt
controller 101 may be programmed to cause an NMI 102
with each keypress, key release, or key repeat. With regard
to UART Control 109, the interrupt controller 101 may be
programmed to cause an NMI 102 with each receipt of a
signal at the communications port. With regard to the on/off
switch 114, the interrupt controller 101 is programmed to
generate an NMI 102 any time this switch is activated.

Description of the Software Activity Detecting
Circuitry

The above described interrupts provide several means for
returning the computer to the higher power compute mode
from one of its Jow power modes. The greater problem is
when to take the computer out of the higher power compute
mode, thereby extending battery life without inconvenienc-
ing the user. The problem is to determine when an executing
software program is in a loop (in compute mode) looking for
an external event such as a key press or a port signal and can
be halied without halting desired operations in progress. In
order to recognize unnecessary loop activities, it is necessary
for the power management system of the present invention
to anticipate how a software programmer will have written
the code to place the program into one of these loops, and
determine when the program can be safely halted without
halting useful operations.

The badly behaved applications programs, which include
many of the commonly available commercial application
programs, often fulfill their input/output needs by direct
hardware control rather than through the BIOS services.
These badly behaved programs can prevent control program
intervention and hence hinder system power management.
In order to maintain the desired control of the system in
accordance with the invention, the control program monitors
various software activities of the application programs.

For determining when the microprocessor clock can be
turned off during the execution of an application program,
particular circuitry is included in the computer in accordance

5,560,024

17

with the invention to detect the activity of software appli-
cation programs. When a particular sought for activity is
detected an NMI is generated if enabled.

As shown in FIG. 4, there are two kinds of software
activities monitored by the power management system of the
present invention. UART clock control monitor 128 moni-
tors a software activity of waiting for a byte of information
from the communications port or waiting for the proper time
to place a byte of information on the communications port.
Similarly, INTT16h trap 124 monitors a software activity of
either waiting for a key to be pressed or looking at the
keyboard buffer to see if a key press is stored. This interrupt
INT16h is conventionally used for keyboard services on
IBM PC compatible computers. Trapping a program using
INT16h will allow the BIOS control program in the com-
puter to maintain control of the system and thus continue to
conserve power by stopping the processor clock between
key presses.

Other software application program activities may be
interspersed with activities for which it is otherwise possible
to turn off the processor clock. When these activities are
occurring, the microprocessor clock should not be turned off
because the application program is not in an idle state and
turning off the clock would delay the computer’s response to
the user. When these other activities are occurring, the
microprocessor clock is not turned off in response to the
NMI 126 generated by UART clock control interrupt 128 or
the INT16h NMI interrupt 122 generated by an INT16h trap
124.

Activities monitored by the novel BIOS control program
embodiment of FIG. 4 are an I/O read/write (communication
with external devices such as a paralle! printer, external
memory, or other devices not handled by the UART) as
monitored by I/O read/write monitor 132, UART activity
(successive bits in a single byte sent to an RS-232 port) as
monitored by UART activity monitor 134, waiting for a tick
of the programmable interval timer 107 as monitored by
programmable interval timer 136, writing to a screen, as
monitored by video access monitor 138, and writing to or
reading from disk, as monitored by mass storage monitor
111. Mass storage monitor 111 is shown in both FIG. 3 and
FIG. 4 because the single bit of data provided by mass
storage monitor 111 indicates activity of both hardware and
software. Additional instructions which are not shown in
FIG. 4, but can also be monitored include CPU opcodes (for
example, multiply).

As provided by the control program, the CPU places on
the address bus 54 and control lines 56 the address of these
registers 132, 134, 136, 138, and 111. Data are in return
provided on data lines 52 indicating to CPU 40 the status of
the activity being examined.

When any of these activities are being performed by the
application programs, related bits are set in address decode
and specific registers 60 through data line 52b, and prevent
the turning off of the CPU 40 clock. By detecting activities
requiring the microprocessor clock to be rumning inter-
spersed with other activities which if alone would not
inconvenience the user if the clock were off, it is possible to
use lower criteria for repeated activity of the INT16h trap
and UART clock control in determining when to turn off the
clock.

The reason the programmable interval timer activity
becomes a reason not to turn off the clock in spite of
apparently idle activity, is that programmers use this pro-
grammable interval to control the speed of other events, for
example movement of objects across the screen in a game

20

25

30

45

50

55

60

65

18

program, and turning off the computer would interfere with
the rhythm of the program. Further, when the program was
turned back on, the loop would be entered again, such that
programs using the programmable interval timer could not
be operated under the power management system of the
present invention.

The following describes the circuitry 124 and 128 which
looks for the INT16h and UART software activities. First,
regarding the INT16h trap 124, a software INT16h instruc-
tion causes the microprocessor 40 to read four bytes from the
computer memory (not shown) starting at the address 58h
bytes from the beginning of the interrupt vecior table. The
INT16h interrupt 122 is intended to trap a software event
that is the execution of the INT16h instruction. Since each
interrupt vector occupies four bytes in the interrupt vector
table, circuitry 124 is provided to monitor the first byte of the
table entry for INT16h, which is located 58h bytes from the
beginning of the interrupt vector table in low memory. Any
read of data by CPU 40 from this memory address can cause
an NMI 122. If an interrupt 122 is generated, an indicator bit
in a particular register (F6E4<bit 7>) accessible to the
microprocessor 40 is set (see port map, FIG. 5C).

The novel software associated with trapping typical sofi-
ware events functions as follows. With regard to the INT16h
interrupt 122, the goal, as described above, is to trap a
software program which has issued the INT16h instruction.
Since this interrupt 122 is typically used for keyboard
servicing, intercepting an INT16h instruction allows the
control program to detect an applications program looking
for keystrokes. If the novel control program of the present
invention obtains an NMI 122 caused by INTI16h, the
conirol program examines the argument (i.e., a particular
INT16h service) passed to the INT16h interrupt handler and
indicates what the calling applications program was trying to
accomplish.

The simplest function for which power saving can be
initiated is the call to wait for a key to be pressed. If the
calling applications program wanted to wait for a key to be
pressed, then the microprocessor can be stopped immedi-
ately until a key is pressed. However, if the applications
program is periodically checking the keyboard buffer with
an INT16h call to see if a key has been pressed, then a guess
may be made based on, for instance, statistics (i.e., how
many times the INT16h interrupt 122 was invoked per time
period) to decide if and when the processor 40 clock should
be stopped.

Since the display controller logic is designed to conserve
power also, (see commonly assigned U.S. patent application
Ser. No. 07/374,884, now abandoned entitled Video Image
Controller for Lower Power Computer, invented by Leroy
D. Harper, John W. Corbett, Douglas A. Hooks, Grayson C.
Schlichting, Renee D. Bader, and John P. Fairbanks, attorney
docket no. M-963, and incorporated herein by reference)
certain control program intervention may be required when
software application programs access the video display of
the computer. Some application programs allow for a user to
interrupt the application program while the application pro-
gram is in the midst of writing to the screen. These appli-
cation programs will insert INT16h calls into other screen
writing activities. Such INT16h calls should not be used to
turn off the microprocessor. Means for distinguishing
INT16h calls during screen writes from INT16h calls in
other loop activities waiting for outside input are discussed
later. However, as discussed above under display power
marnagement, the present invention allows for the micropro-
cessor clock to be turned off while the screen is being
refreshed but its contents are not being changed. The screen

5,560,024

19

refresh is not handled by the microprocessor and can pro-
ceed normally even though the microprocessor is turned off.
Thus, the display controller controls two functions, gener-
ating characters to be displayed on the screen which requires
the microprocessor to be on, and refreshing a static screen
which does not require the microprocessor to be on. A bit is
set to alert the control program of the display controller
status, in particular when the display controller is perform-
ing a screen write which requires the microprocessor to be
on.

Applications programs which use the UART directly
without the aid of BIOS would find the communications
system unstable or unusable when used with the power
management system of the present invention if no provision
were made for stabilizing the lock oscillator before connect-
ing the clock. In order to assist such applications programs,
an NMlI is enabled to cause a delay loop when a write or read
from the UART occurs. With regard to the UART interrupt
126 shown in FIG. 4, any read or write to an address specific
to the UART 128 will cause an NMI 126 if enabled by
changing an appropriate bit in a particular register accessible
to the microprocessor 40. This information is used by the
control program to monitor the start-up of the UART clock
oscillator to ensure that the UART baud clock oscillator (not
shown) is stable before a program is allowed to proceed with
further UART activity. This information is also used by the
control program to know when another applications program
is utilizing the UART through direct hardware control tech-
niques. This is not possible on a typical prior art IBM PC-XT
compatible computer.

Power Management Software

The conventional ROM BIOS functionality available in
prior art computers is extended in accordance with the
present invention by means of additional software functions
and services, which are accessed by any application program
through a conventional interface of software interrupts as
used by ROM BIOS and MS-DOS. The IBM PC-XT com-
patible ROM BIOS function designated “get keypress”
operates non-conventionally in accordance with the inven-
tion to power off as much of the computer system as possible
at any one time, instead of sitting in an idle loop as is done
in the prior art computers. This function is linked to circuitry
so that the enhanced software is invoked when a keypress is
detected. The conventional IBM PC compatible ROM BIOS
function “get keyboard status™ is modified so that a count of
the number of times a call is made to this function over a
given time period is monitored. After a certain time, it is safe
to assume that the application program is idle, that is,
waiting for user input. If the conditions of the algorithm are
satisfied then it is safe to stop the microprocessor until a key
is pressed. The microprocessor may be stopped whenever
there has been no keyboard or significant microprocessor
computing activity for a given time, i.e., preferably approxi-
mately 100 milliseconds.

The algorithm for determining when the microprocessor
can safely be shut off according to the above requirement for
a given time is to count the number of times an INT16h call
has been made during an interval between timer ticks, and
shut off the microprocessor when the number exceeds a
specified value.

However, it is not preferred to check for an application
program being haltable simply by counting the number of
times the program has used INT16h to check the keyboard
buffer since the last key press. An absolute number of checks

10

15

20

30

50

60

65

20

has been shown with a variety of application programs either
to cause the computer to turn off the program when other
significant computation is going on (a condition unaccept-
able to the user) in the case when the number of checks
between timer ticks has been set too low, or to cause the
computer to remain on when the program is in a loop (a
condition which shortens battery life). Application programs
have been observed to send INT16h commands as few as
seven times per timer tick and as many as 250 times per
timer tick, both extremes occurring in programs which were
in a repetitive loop during which the microprocessor could
be turned off. However, programs which are performing
other useful operations such as writing to memory have been
observed to make as many as 10 INT16h calls per timer tick,
and would be erroneously shut off by an algorithm which
used the criterion of requiring only seven INT16h calls per
timer tick.

FIGS. 7A through 7G show results of these application
program observations. FIG. 7A shows a graph of many
observations of a Lotus 123 program’s use of INT16h calls
when the processor is operating at a 1.3 MHz rate and timer
ticks are occurring every 54.9 milliseconds. FIG. 7A accu-
mulates observations of the Lotus 123 program’s behavior
over approximately a 1-minute period. During the first
approximately 15 seconds after the observations begin, the
program is performing a calculation during which it looks
for key presses with INT16 calls only twice during one of
the timer tick periods. Between 15 seconds and 19 seconds,
the program looks for key presses about 7 or 8 times
between timer ticks. At about 19 seconds, the program
ceases looking for key presses for a short time while other
computations are performed in response to a key press. Such
activity occurs again at approximately 23 seconds. At
approximately 24 seconds a lengthier calculation prevents
INT16h calls for key presses. Thus the microprocessor could
have been off for most of the time between 15 and 23
seconds. An algorithm for saving power must recognize this
possibility. It is clear from the general shape of the graph of
FIG. 7A that the frequency of INT16h calls has only a few
values, predominantly zero and 7 or 8. (The value 7 or 8
probably represents the same loop, and the difference of one
simply represents round-off error.)

As shown in FIG. 7B, the same Lotus 123 program
running at a 7 MHz clock speed repeats its loops more
frequently between timer ticks of 54.9 milliseconds. Thus,
the INT16h calls almost always occur approximately 40
times per timer tick when they occur at all, the vertical white
lines indicating zero times per timer tick when active
computing is being done. Most of the black portion of the
graph represents time when unnecessary power is being
consumed needlessly running the microprocessor, and for
which an algorithm is desired for turning off the micropro-
CESSOr.

A more sophisticated algorithm improves the power man-
agement ability of the present invention. One such algorithm
which allows hardware to detect most loop activity which
could be eliminated by turning off the microprocessor and
which does not cause the microprocessor to be turned off
when useful computation is occurring is to compare the
number of INT16 calls during one timer tick interval to the
number of INT16h calls during the previous timer tick
interval. If these numbers are the same (or differ by only one
count), it is likely that the computer is in a loop and that the
microprocessor can be turned off. Finding two time periods
with the same number of INT16h calls in which the number
is greater than a minimum value of about 4 is an algorithm
for turning off the microprocessor which is much preferred

5,560,024

21

over providing an absolute count which must be exceeded
during a timer tick interval. Another algorithm which gives
more assurance that the microprocessor will not be errone-
ously tuned off, and which uses only a small amount of
additional power, involves requiring a string of three inter-
vals during which the number of INT16 calls differs by no
more than one.

The computer, however, need not be fully turned off. In
the case of an application program waiting for a keypress, all
sections of the computer are turned off with the exception of
the video display. The computer is then in display mode and
appears to the user to be continuously on, as keys are
periodically pressed, or communications are sent and
received. If there continues to be no activity for a longer
given time, i.e., preferably approximately four minutes, then
the video display is turned off and the computer is in the off
mode.

In accordance with the invention, the problem of coping
with badly behaved applications programs is solved by
providing hardware circuitry to notify the control program
software if an application is taking over control of the ROM
BIOS keyboard services. This method is accomplished by
having the hardware monitor a particular fixed memory
location as defined by the conventional IBM PC-XT speci-
fication used for the software interrupt to access keyboard
services, and alerting the ROM BIOS if this occurs.

FIG. 6 Flow Chart for Power Management

The power management control program in accordance
with the invention is illustrated in flow chart form in FIG. 6.
As shown in FIG. 6, at the top of the flow chart the system
is in the compute mode 10. The computer can be put into
compute mode by a variety of events. The novel control
program first monitors the computer circuitry to determine
what caused a nonmaskable interrupt 102 (NMI) to place the
computer into compute mode 10. This part of the control
program is referred to as the NMI dispatcher 134. In the case
of the power management portion of the control program,
there are five activities which the NMI dispatcher 134 is
looking for.

These five activities are, in the preferred embodiment of
the invention, software interrupt 122 (i.e., INT16h) from
trap 124 (see FIG. 4), timer tick interrupts 100 (see FIG. 3),
interrupt 116 from the activation of the on/off switch 114
(see also FIG. 3) keyboard interrupts 104 (INT9) (also see
FIG. 3) and screen write interrupt 176 (i.e., INT10). The
on/off switch 114 is described above. The timer tick interrupt
100 as described above is provided every 54.9 milliseconds
(i.e., 18.2 times a second) and is programmably switchable
as described above to approximately 1 tick per minute.

Keyboard interrupts 104 are generated by the keyboard
control circuits 106 of FIG. 3 each time a key is pressed,
released, or held long enough for it to repeat. In accordance
with a preferred embodiment of the invention, the keyboard
control circuits 106 (which in conventional systems are
provided by a separate device) are provided in an ASIC in
the computer. Preferably both the scanning and decoding of
the keyboard signals are performed in this ASIC.

Response to interrupt INT16h trap 122 operates as fol-
lows: after receipt of interrupt INT16h trap 122, the control
program determines what function the software program
was trying to accomplish when it issued the INT16h instruc-
tion. Two possible functions are first, waiting for a keypress
140 and second of all, obtaining keyboard status 142. In the
case of waiting for a keypress 140 the system can immedi-

20

25

45

55

60

65

22

ately go to display mode 16, in which the display is on and
the other hardware elements of the computer are off. This is
what happens when the computer is not computing and
typically waiting for the user of the computer to type. In the
case when INT16h is used to obtain keyboard status 142, the
control program increments a counter 144. This counter 144
counts the number of times the keyboard status 142 was
checked using the INT16h instruction since the last timer
tick 100. The point is that if the application program is in a
low intensity processing mode or a zero intensity processing
mode, the keyboard status 142 will be checked many times.
Thus within a short time period there will be many counts
accumulated in the counter 144. This usually indicates that
no significant amount of processing is going on. As men-
tioned earlier, however, it is preferable to compare the
number of counts since the last timer tick 100 to the number
of counts in the previous interval, since different software
programs have widely different rates of using the INT16h
interrupt to check keyboard status. Thus after updating the
counter at step 144, the control program returns the com-
puter to compute mode 10 in which the application program
proceeds with its next instruction. It is possible that many
NMI 102 interrupts will turn out to be INT16h interrupts
122, that they will be status requests 142, and that the
counter will again be updated, returning the computer to
compute mode. After some period of time, however, an NMI
102 interrupt will be found by NMI dispatcher 134 to have
been caused by a timer interrupt from a timer tick 100. This
timer interrupt 100 causes the computer to enter a part of the
program for determining whether it is safe to turn off the
microprocessor and halt the program being executed without
interfering with functions the user wants to perform.

The following describes the operation of the control
program with regard to the timer tick interrupt 100. After the
NMI dispatcher 134 determines that the interrupt is a timer
interrupt 100, the control program at 148 determines
whether the computer is in the display (low power) mode 16
or off mode 12. At this point, if the computer is in the display
mode 16, the control program at 150 determines if the
computer has been in the display mode 16 for a predeter-
mined period of time such as greater than two to four
minutes. If the control program determines the computer
was in off mode 12, it returns the computer to off mode 12.
If the system is in the display mode 16, but at 150 has been
in that mode for less than a time of approximately four
minutes, then the system remains in the display mode 16. If
the computer has been in the display mode 16 for a period
of greater than four minutes, which means that a key press
or other activity which moves the computer into compute
mode 10 has not occurred for four minutes, the control
program puts the system into the off mode 12. The off mode
12 described above with regard to FIG. 1 is a state in which
the display is off, the microprocessor is off, the other
sections of the computer are off, and the timer is slowed
down to approximately 1 timer tick per minute. In off mode,
the timer interrupts 100 (see FIG. 3) cycle the control
program of FIG. 6 through the compute mode 10 and back
to the off mode about once per minute.

If the timer interrupt 100 causes the control program to
determine at step 148 that the computer is not in a low power
mode (thus it is in compute mode, communication mode, or
DMA mode as shown in FIG. 1), then at step 154, the
INT16h counter is examined to determine if the number of
INT16h interrupts since the last timer interrupt 100 is greater
that a minimum number. A presently preferred minimum
number is five. If this minimum number such as five is
exceeded, the control program makes a comparison at step

5,560,024

23

184 between the number of INT16h interrupts in the last
timer tick interval just completed and the number of INT16h
interrupts in the previous interval. Alternatively, the control
program may compare the number of INT16h interrupts in
three succeeding intervals. A counter stores the number of
INT16h counts in several successive timer tick intervals and
the control program continues to make this comparison once
for every timer interrupt 100.

If at step 184 the control program determines that the
number of INT16h interrupts in the INT16h counter differs
from the number in the previous interval, indicating that
some less repetitive activity is occurring, even if the number
of INT16h interrupts is greater than the minimum number
(such as five), the control program will not turn off the
microprocessor clock and stop the executing application
program, but will move to step 181.

Regarding step 181, a power saving device described
more completely in copending application Ser. No. 07/374,
514, which is now U.S. Pat. No. 5,021,679, incorporated
herein by reference, switches the system power supply
voltage from a low voltage in the range of 2 to 3 volts to 5
volts only when the computing requirements are intense.
The higher voltage causes the voltage controlled oscillator
which drives the microprocessor clock to run at a faster
speed, in the present case to speed up from about 2 MHz to
about 7 MHz. When the faster computing speed is not
needed, the computer operates at lower power and lower
speed, thereby saving considerable power. When the com-
puter first enters compute mode 10, the voltage is at the
lower level. Step 181, which is reached every time a power
management timer interrupt 100 occurs determines whether
the computer has been in compute mode more than R
seconds, presently preferred to be 1.5 seconds. If the com-
puter has been in compute mode 10 less than 1.5 seconds,
the program returns control to the application program in
compute mode 10 and the system power supply remains at
the Jow voltage. If the computer has been in compute mode
more than 1.5 seconds, the control program ai step 183
activates circuitry which increases the voltage of the system
power supply to 5 volts. This in turn causes the voltage
controlled oscillator which drives the microprocessor clock
to speed up, giving the user quicker response to heavier
computing requirements.

If the number of INT16h interrupts in two or three
successive intervals differs by not more than a count of one
(for round-off error), then at step 184 the tolerance is
determined to be OK (the activity is determined to be
repetitive).

There are application programs which use an INT16h call
fairly frequently intermixed with other computations which
should not be halted. Some of these uses will produce
INTI6h calls in such a regular pattern that the above
algorithm for comparing INT16h calls during two or three
successive timer tick intervals will find identical numbers of
calls and would erroneously turn off the microprocessor in
the midst of an operation if no other tests were made.
Examples of these activities are writing to the screen,
writing to mass storage memory, and sending or receiving
from a communications port. In order to avoid erroneously
turning off the computer during a computation, the control
program checks for these activities. Variations of the control
program check for different specific activities. The control
program shown in FIG. 6, after determining at step 184 that
two or three successive intervals have the same number of
INT16h calls, checks at step 186 to see if a screen write
command (a video access command) has been given since
the last occurrence of timer interrupt 100. A variation on the

15

25

30

35

45

50

55

60

65

24

block diagram of FIG. 6, discussed in connection with FIG.
4, includes additional tests for disk or other memory access
and communications port access, with the answer to each
question being “no” before the program moves to the low
power display mode 16, in which the microprocessor clock
is off and the executing computer program is halted. A
further variation provides for forming a table of frequency of
INT16h calls made by different programs and turning off
when the number of INT16h calls matches the value in the
table. Similarly, at the beginning of an application program,
the control program can begin to form a history of INT16h
call frequency and start responding to a particular frequency
of INT16h calls when the history indicates the current
frequency is equal to the stable value. When the micropro-
cessor clock is off, the transistors necessary for moving
quantities into and out of memory and other such hardware
operations necessary to respond to software commands are
halted, and use of power is markedly reduced. ’

If the control program determines at step 186 that the
application program is writing to screen (video access), or in
another variation writing to mass memory, reading from
mass memory, writing to the communications port or read-
ing from the communications port (or other tests which may
be preferred in a particular embodiment), the control pro-
gram returns to compute mode 10, and the application
program takes over again.

Interrupt 116 is generated by the on/off switch 114 (see
FIG. 3) as described above. When the user activates the
on/off switch, then an NMI 116 is generated. The activation
of the on/off switch means, as determined at 156, either that
the computer is on and is being turned off or that the
computer is off and is being turned on. Thus as shown at step
156 if the computer status is that it is on, activating the
switch puts the computer into the off mode 12. If the
computer is off at 156 then activating the on/off switch
causes the timer tick circuit to be reprogrammed at 158 to
provide timer ticks every 54.9 milliseconds. (As stated
above, other intervals may be selected.) The memory loca-
tions associated with keeping time of day information are
updated to reflect the transition to timer ticks every 54.9
milliseconds instead of once per minute, then the computer
is returned to the compute mode 10. Updating of the time of
day information is performed by reading a counter which
counts and accumulates the number of 54.9 millisecond time
periods which have passed since the counter was last
cleared. This counter preferably clears itself once per 1024
time periods (56.2 seconds).

The next interrupt relevant to the power management
system is the keyboard interrupt 104, preferably INT9. As
described above interrupt 104 is generated by the keyboard
control circuitry 106 (see FIG. 3) when a key is pressed or
released. Upon generation of a keyboard interrupt 104 the
above described INT16h counter 144 is reset at step 160.
After this the key input is processed at 612 by the computer
and control is returned to the application program in com-
pute mode 10. As shown by the doted lines 164, 166, both
the off mode 12 and the display mode 16 return control to the
NMI dispatcher 134 periodically as determined by the
system timer tick interrupt 100.

The last interrupt relevant to the power management
system embodiment of FIG. 6 is screen write INT10 inter-
rupt 176. INT10 is a standard BIOS call to cause a screen
write. The INT10 interrupt causes the BIOS to access the
screen, as was done by the video access call tested by
hardware in block 186 discussed earlier. Another embodi-
ment, not preferred, responds to the INT10 call but does not
detect at 186 a direct video access. Indeed, if direct video

5,560,024

25

access is detected at 186, detecting the INT10 call is not
necessary, but is preferred to give faster response before
waiting for timer interrupt 100.

Finally, manual means are also provided for putting the
computer into computer mode 10. There are programs which
will likely be erroneously shut off by the power management
system of the present invention if the embodiment selected
has parameters which produce significant power savings. In
order to allow such programs to run successfully, the com-
puter preferably includes means, for example a combination
of keystrokes, for disabling the power management feature
of the present invention. This disabling means is preferably
used only when the user has encountered a problem with the
power management system. In one embodiment a key press
or key combination causes power management to be over-
ridden. Overriding is accomplished in this embodiment by
disabling the timer interrupt 100 generated by timer 98.

In accordance with the invention, the control program as
described above is preferably written in assembly language
and is installed in ROM associated with the computer
microprocessor. This preferred assembly language is that
which is conventionally used for the Intel 8086 family of
MiCrOpProcessors.

A control program in accordance with the invention is
also shown in a Microfiche Appendix to the above-refer-
enced U.S. patent application Ser. No. 07/375,721, now
abandoned, entitled Portable Low Power Computer, attorney
docket no. M-968. Parts of the program relevant to the
control power management function are shown at pages
84-108 of the program.

The above description of the invention is illustrative and
not limiting. Other embodiments of the invention will be
apparent to one of ordinary skill in the art in the light of the
invention. The invention is not limited to IBM PC XT
compatible computers or to IBM PC compatible computers.
Also, the particular hardware and software embodiment of
the invention as described above are not intended to be
limiting, but illustrative. In other embodiments of the inven-
tion more or less of the functions are provided in hardware
and/or software.

We claim:

1. A method for reducing power consumed by a computer
having a processor for executing at least one application
program and having a manual input device for inputting data
to the processor, the application program generating inter-
rupts to call for receiving the data input from the manual
input device, the method comprising the steps of:

during execution of the application program, counting a
first number of the interrupts generated by the appli-
cation program during a first time interval of predeter-
mined duration;

counting a second number of the interrupts generated by
the application program during a second time interval
of equal duration and subsequent to the first;

determining a difference between the first number and the
second number; and

reducing power consumed by the processor if the differ-

ence is within a predetermined range.

2. The method of claim 1, wherein the step of reducing
power is undertaken only if the first number is at least four
interrupts per a time interval of Yis second duration.

3. The method of claim 1, wherein the step of reducing
power comprises the step of turning off a clock signal, said
clock signal being provided for controlling the processor.

4. The method of claim 3, further comprising, after the
step of reducing power, the step of externally turning on said
clock signal.

10

15

30

35

45

50

55

60

65

26

5. The method of claim 3, further comprising, after the
step of reducing power, the step of turning on said clock
signal in response to detection of a data input from the
manual input device.

6. The method of claim 1, wherein said interrupts are calls
for a status of the manual input device.

7. The method of claim 1, wherein the manual input
device is a keyboard.

8. The method of claim 1, wherein the step of reducing
power includes the step of operating the processor at a
reduced clock frequency.

9. A method for reducing power consumed by a computer
having a processor for executing at least one application
program and having a manual input device for inputting data
to the processor, the application program generating inter-
rupts for receiving the data from the manual input device,
comprising the steps of:

during execution of the application program, counting a
first number of the interrupts generated by the appli-
cation program during a first time interval of predeter-
mined duration;

counting a second number of the interrupts generated by
the application program during a second time interval
of equal duration and subsequent to the first;

counting a third number of the interrupts generated by the
application program during a third time interval of
equal duration and subsequent to the second; and

reducing power consumed by the processor if the third
number is within a predetermined value of both the first
and second numbers.

10. The method of claim 9, wherein the step of reducing
power includes the step of operating the processor at a
reduced clock frequency.

11. An apparatus for reducing power consumed by a
computer having a processor for executing at least one
application program and having a manual input device for
inputting data to the processor, the application program
generating interrupts to call for receiving the data from the
manual input device, comprising:

means for counting a first number of the interrupts gen-

erated by the application program during a first time
interval of predetermined duration during execution of
the application program;

means for counting a second number of the interrupts

generated by the application program during a second
time interval of equal duration and subsequent to the
first;

means for determining a difference between the first and
second numbers, the means for determining being
operatively connected to each of the means for count-
ing; and

means for reducing power consumed by the processor if

the difference is within a predetermined range, the
means for reducing power being operatively connected
to the means for determining a difference.

12. The apparatus of claim 11, further comprising a timing
signal generator for generating clock signals for controlling
the processor and being operatively connected to the pro-
cessor; wherein the means for reducing power comprises
means for turning off the timing signal generator.

13. The apparatus of claim 11, wherein the means for
reducing power includes means for operating the processor
at a reduced clock frequency.

% % % % %

