
United States Patent (19)
Harper et al.

54)

75

73)

21
22)

(60)

51)
52)

(58)

56)

COMPUTER POWER MANAGEMENT
SYSTEM

Inventors: Leroy D. Harper, Sunnyvale;
Grayson C. Schlichting, Cupertino;
Douglas A. Hooks, Sunnyvale; Ian H.
S. Culimore, Palo Alto; Gavin A.
Bradshaw, Cupertino; Biswa R.
Banerjee, San Jose; John P.
Fairbanks; Roderick W. Stone, both
of Sunnyvale, all of Calif.

Assignee: Fujitsu Personal Systems, Inc., Santa
Clara, Calif.

Appl. No.: 134,341
Fied: Oct. 8, 1993

Related U.S. Application Data
Division of Ser. No. 87,249, Juli. 1, 1993, which is a
division of Ser. No. 436,642, Nov. 13, 1989, abandoned,
which is a continuation-in-part of Ser. No. 373,440,
Jun. 30, 1989, abandoned.

Int. Cl. .. G06F 1/08
U.S. C. 395/750; 364/DIG. 1;

364/270; 364/270.2; 364/273; 364/273.1;
364/273.2

Field of Search 395/750, 275,550;
364/707; 365/222

References Cited
U.S. PATENT DOCUMENTS

3,909,685 9/1975 Baker et al. 318/139
3,941,989 3/1976 McLaughin et al. 364/707
4,129,091 7/1978 Yorimoto et al. 395/750
4,137,563 /1979 Tsunoda 395/550
4,203,153 5/1980 Boyd 395/750
4,279,020 7/1981 Christian et al. ... 395/750
4,317,181 2/1982 Teza et al. 179/81
4,409,665 10/1983 Tubbs 364/707

(List continued on next page.)

FOREIGN PATENT DOCUMENTS
0229692A3 7/1986 European Pat. Off. .
0265209A1 4/1988 European Pat. Off. .

2080585 2/1982 United Kingdom .

|||||||||||||||||||
USOO5428790A

11 Patent Number: 5,428,790
45 Date of Patent: Jun. 27, 1995

OTHER PUBLICATIONS

Electronic Design vol. 32, No. 20, 4 Oct. 1984, Waseca,
Minn., USA pp. 185-191; C. A. Mroz et al.: Advances
Clock Controller Cuts Power Needs, Size of Static
CMOS Systems *p. 187, left column, line 10-right col
umn, * line 4, p. 188, right column, line 10-line 43 *p.
191, left column, line 6-right column, line 6*.
Hewlett-Packard Journal vol. 37, No. 7, Jul. 1986, Am
stelveen, Netherlands pp. 4-13; J. T. Eaton et al: “De
sign of HP's Portable Computer Family' *p. 5, right
column, line 28-line 51* *p. 10, left column, line 1-p. 11,
left column, line 40*.
Brownstein, Mark, et al., “Quarterdeck Plans to Collect
Fees on Desqview Patent”, Infoworld, Apr. 24, 1989.

Primary Examiner-Jack B. Harvey
Assistant Examiner-Ayaz R. Sheikh
Attorney, Agent, or Firm-Skjerven, Morrill,
MacPherson, Franklin & Friel; Norman R. Klivans
57 ABSTRACT
A low power management system including both hard
ware and software for a battery powered portable com
puter. The low power management system powers
down various sections of the computer when they are
not used. The low power management system is con
trolled by a control program in the microprocessor of
the computer. The low power management system
includes the capability to turn off clock signals to vari
ous sections of the computer based upon demand. Also
included is the capability to turn on clock signals based
upon demand. The low power management system also
includes the capability to turn on the computer upon a
press of a key on the computer keyboard. The low
power management system monitors software applica
tion programs for keyboard activity so as to turn off the
microprocessor in the computer in response to a loop
looking for a keypress and certain other loops which
can be monitored without use of the microprocessor.

14 Claims, 16 Drawing Sheets

4,435,761 3/1984
4,455,623
4,463,440
4,479,191
4,545,030 10/1985
4,554,630 11/1985
4,570,219
4,573,117
4,612,418
4,615,005
4,644,300
4,669,059
4,698,748
4,747,041

5,428,790
Page 2

U.S. PATENT DOCUMENTS
Kimoto 395/550

6/1984 Wesemeyer et al. 364/707
7/1984 Nishiura et al. 395/550
10/1984 Nojima et al. 364/707

Kitchin .
Sargent et al. 395/575

2/1986 Shibukawa et al. 395/775
2/1986 Boney 395/750
9/1986 Takeda et al. 179/81
9/1986 Maejima et al. 395/550
2/1987 Ibe et al. 331/111
5/1987 Little et al. 395/750
10/1987 Juzswik et al. 395/750
5/1988 Engel et al. 395/750

4,748,559
4,758,945
4,780,843
4,809,163
4,819, 164
4,823,292
4,825,358
4,825,407
4,841,440
4,851,987
4,870,570
4,907,150
5,025,387
5,041,964
5,121,500

5/1988
7/1988
10/1988
2/1989
4/1989
4/1989
4/1989
4/1989
6/1989
7/1989
9/1989
3/1990
6/1991
8/i991
1/1992

Smith et al. 395/750
Remedi 395/750
Tietjen 395/725
Hirosawa et al. 395/750
Branson 395/550
Hillion 364/707
Letwin 395/700

395/550
... 395/275
... 395/550
... 395/750
395/575

... 364/493
... 395/750

- - - - - - - - - - - - - - - - - 395/750

Loessel et al. ...
Yonezu et al. ..
Day
Satoh et al. ..
Arroyo et al.
Frane
Cole et al.
Arlington et al.

U.S. Patent June 27, 1995 Sheet 1 of 16 5,428,790

DMA-OFF WCO-OFF
VCO2 MHZ UART DISPLAY-ON
DISPLAY-ON aCCeSS UARTON
UARTON 2 DMA-OFF

24 150 mW 100 W
LOW-VOt COMMUNICATE WCO-OFF
c6MGNCATE/NSA DSPLAY-OFF

UART-OFF
DMA-OFF DMA-OFF 12
WCO-7 MHz
DISPLAY-ON Decision based
UARTON On hardware

450 mW
5-VOt inputs Time limer

OMMUNICAT tick tick

didne aCCESS eSSed
D 70 mW

eC DMA TIME UPDATE
ne 400mW 14

22 5-VOt 10 WCO-2 MHz
500 mW 20 nW PSEAF

LOW-Volt R

&OMINAT COMPUTE MA-OFF
VCO-7MHz DMA VCO2 MHz \ D
DISPLAY-ON reqest) DISP-ON do
UARTON DMA RTOf D.
DMA-ON & DMA-OFF

w request

A. ty son S5
7 DISPLAY CD ap Timer

SSAYS WCO-OFF Or 8
UART-OFF DISPLAY-ON Keyboard VCO-2 MHz
DMA-ON UART-OFF Activity DISPLAY-ON

DMA-OFF UART-OFF
DMAON

Figure 1

U.S. Patent June 27, 1995 Sheet 3 of 16 5,428,790

CPU Interrupt 103

54 52
ADDR DATA

116

FG. 3

U.S. Patent June 27, 1995 Sheet 4 of 16 5,428,790

Specific
Registers

Read/wrt
Monitor

Prog. Int. UART
Ali; R. Clock UARTNMI
Monitor

FIG. 4

U.S. Patent

"O Addres
OOOOOOF
OOO-003F
OO60-0063
0080-009F
OOAO-00BF
03B0-03BB
O3DO-03DF
03F8-03FF

Port Address

F6CO
00h at Reset

F6C
00h at Reset

F6C2
00h at Reset

F6C3
00h at Reset

June 27, 1995

Usage

Sheet 5 of 16

TABLE 1.

DMA Controller internal registers
Interrupt Controller internal registers
PPI Internal I/O
DMA Page Registers
NMI Mask Register
Monochrome Display Adapter registers
Color Graphics Adapter registers
Primary Asynchronous Adapter registers

Bit Value

O -6

TABLE 2

Description

5,428,790

Map device connected to EMCS0 to C0000 - CFFFFh
Map device connected to EMCS1 to C0000 - CFFFFh
Map device connected to EMCS2 to C0000-CFFFFH
Map device connected to EMCS3 to C0000-CFFFFh
Map device connected to EMCSO to D0000-DFFFFh
Map device connected to EMCS1 to D0000-DFFFFh
Map device connected to EMCS2 to D0000-DFFFFh
Map device connected to EMCS3 to D0000-DFFFFh

Device page to be mapped to
C0000-CFFFFH

Device page to be mapped to
D0000-DFFFFH

Select 0 wait states for memory cycles
Select 1 wait states for memory cycles
Select 2 wait states for memory cycles
Select 3 wait states for memory cycles

Figure 5A

U.S. Patent June 27, 1995 Sheet 6 of 16 5,428,790

F6C4 0 1 Enable Error NMI
00th at Reset 1-7 Reserved

F6CS O l Map device connected to EMCS0 to E0000-EFFFFh
80th at Reset l l Map device connected to EMCS1 to E0000-EFFFFh

2 Map device connected to EMCS2 to E0000-EFFFFh
3 1 Map device connected to EMCS3 to E0000-EFFFFh
4 1. Map device connected to EMCS0 to E0000-EFFFFh
5 1. Map device connected to EMCS1 to E0000-FFFFFh
6 Map device connected to EMCS2 to E0000-FFFFFh
7 Map device connected to EMCS3 to E0000-FFFFFh

F6C6 0-6 0-7Fh Device page to be mapped to E0000-EFFFFh
00h at Reset

F6C7 0-6 0-7Fh Device page to be mapped to F0000-FFFFFh
00h at Reset

F6E4 0-3 Reserved for PERIPHERAL ASIC
00h at Reset 4 1 ASSert DISEXPP on accesses to A8000-AFFFFh

5-7 Reserved for PERIPHERAL ASC

TABLE 3

Port Address Bit Value Description

F6E0 0-3 O-Fh Duty cycle of the contrast signal,
R/W Oh corresponds to 1/16 duty cycle,
00h at Reset 1h corresponds to 2/16 duty cycle,...

Eh corresponds to 15/16 duty cycle,
Fh corresponds to 15/16 duty cycle.

4-5 0-3h Initial keyboard repeat delay
6-7 0-3h Subsequent keyboard repeat delay

F6E1 O O MDA compatible display
R/W 1. CGA compatible display
00h at Reset 1. 1. Disable the internal display

2 1. Disable the character blinking feature
3 1. Disable the automatic updating of bit-map memory by the

display controller
4 Disable the UART from the I/O bus
5 1. Masks IRQ0's from waking the system clock
6 Masks IRQ1's from waking the system clock
7 1. Masks IRQ4's from waking the system clock

Figure 5B

U.S. Patent

F6E2
W only
00h at Reset

F6E3
R only

F6E4
R/W
OXh at Reset

F6E5
R only

F6E6
R only

F6E7
R only

0-3

g

3-5

June 27, 1995

:

Oh
1h.
2-3h

Oh
h

Sheet 7 of 16

PC/XT compatible dip switches 5-8.
PC/XT compatible dip switches 1-4.

EXTRA input signal is active (high).
LOWBAT input signal is active (high).
PQKEYN input signal is active (low).
ONOFFN input signal is active (low).
PERCLKN input signal is active (low).
EXTSYSCLK is in use.
CALMAN input is active (low).
CALMBN input is active (low).
Display controller is in a state to which the system
stopped.

CDET1AN input is active (low).
CDET2AN input is active (low).
CDET1BN input is active (low).
CDET2BN input is active (low).

5,428,790

clock may be

Enable access to font ROM/RAM at A8000-AFFFFh.
LOWBAT signal indicates a dead battery
LOWBAT signal indicates a low battery
Clear 54.9 ms increment counter.
INT16h has been called since the last time NMI's were cleared.

Least significant byte of the 54.9 ms increment
COLater.

Most significant bits of the 54.9 ms increment
Colter
Reserved

Select 40 x 25 text mode (CGA only)
Select 80 x 25 text mode
Select graphics mode (CGA only)
Enable the display controller to refresh the LCD
Display B8000-B8FFFh (CGA 80 x 25 text only).
Display B8000-B87FFh (CGA 40 x 25 text only).
Display B8000-B8FFFh (CGA 80 x 25 text only).
Display B87FF-B8FFFh (CGA40 x 25 text only).
Display B9000-B9FFFh (CGA 80 x 25 text only).
Display B97FF-B9FFFh (CGA 40 x 25 text only).
Display B9000-B9FFFh (CGA 80 x 25 text only).
Display B97FF-B9FFFh (CGA 40 x 25 text only).
Display BAO00-BAFFFh (CGA 80 x 25 text only).
Display BA7FF-BAFFFh (CGA 40 x 25 text only).
Display BAO00-BAFFFh (CGA 80 x 25 text only).
Display BA7FF-BAFFFh (CGA 40 x 25 text only).
Display BB000-BBFFFh (CGA 80 x 25 text only).
Display BB7FF-BBFFFh (CGA 40 x 25 text only).
Display BB000-BBFFFh (CGA 80 x 25 text only).
Display BB7FF-BBFFFh (CGA 40 x 25 text only).
IRQ0 timer interrupt has occurred since the

Figure 5C

U.S. Patent June 27, 1995 Sheet 8 of 16 5,428,790

last time NMI's were cleared.
7 1. IRQ1 keyboard interrupt has occurred since the last time NMI's

were cleared.

F6E8 O 1 Enable the EXTRA signal to generate an NMI.
R/W 1. Enable the LOWBAT signal to generate an NMI.
00h at Reset 2 Enable any of the card detect signals to generate an NMI if they are

individually enabled.
3 Enable the video controller to generate an NMI when video display

pages are changed.
4 Enable the PQKEYN signal to generate an NMI.
5 1. Enable the ONOFFN signal to generate an NMI.
6 Enable the IOCHKN signal to generate an NMI.
7 Enable the CALMAN and CALMBN to generate an NMI.

F6E9 O Enable the CDET1AN signal to generate an NMI.
R/W 1. 1. Enable the CDET2AN signal to generate an NMI.
00h at Reset 2 1. Enable the CDET1BN signal to generate an NMI.

3 1 Enable the CDET2BN signal to generate an NMI.
4 Enable an IRQ0 request to generate an NMI.
5 1. Enable an IRQ1 request to generate an NMI.
6 1. Enable NMI's for reading 00058h (INT16h).
7 O Clear all NMI's and indicator latches.

F6EA 0 Signal ONOFFN has been active since the last time
R only NMI's were cleared.

1. 1 Signal PQKEYN has been active since the last time NMI's were
cleared.

2 The display page register has been written since the last time NMI's
were cleared.

3 1. The PERIPHERAL ASIC generated an NMI.
4. One of either CALMAN or CALMBN signal has been active since

the last time NMI's were cleared.
5 1. Signal LOWBAT has been active since the last time NMI's were

cleared.
6 Signal EXTRA has been active since the last time NMI's were

cleared.
7 Signal IOCHKN has been active since the last time NMI's were

cleared.

F6EB O 1. Signal CDET1AN has made a 0-1 transition since the last
R only time NMI's were cleared.

Card a extended pin out-going NMI.
1. Signal CDET1AN has made a 1-0 transition since the last time

NMI's were cleared.
Card a extended pin in-coming NMI.

2 1. Signal CDET2AN has made a 0-1 transition since the last time
NMIs were cleared.
Card a micro switch out-going NMI.

3 1. Signal CDET2AN has made a 1-0 transition since the last time
NMI's were cleared.
Card a micro switch in-coming NMI.

4 1. Signal CDET1BN has made a 0-1 transition since the last time
NMI's were cleared.

Figure 5D

U.S. Patent June 27, 1995 Sheet 9 of 16 5,428,790

Card a extended pin out-going NMI.
5 Signal CDET1BN has made a 1-0 transition since the last time

NMI's were cleared.
Carda extended pin in-coming NMI.

6 Signal CDET2BN has made a 0-1 transition since the last time
NMI's were cleared.
Card a micro switch out-going NMI.

7 1. Signal CDET2BN has made a 1-0 transition since the last time
NMI's were cleared.
Card a micro switch in-coming NMI.

F6EC O
R/W
00h at Reset 1.

Timer generates IRQ0's every 54.9 ms.
Timer generates IRQ0's every 56.2 s.
Reserved always 0.
SELVDD output low (5 Volts) if F6ECh bit 4 is low.
SELVDD output high (3 Volts) if F6ECh bit 4 is low.
LCDPWRN signal low (display power and clocks active).
LCDPWRN signal high (display power and clocks disabled).

3

4. SELVDD signal follows the polarity of F6ECh bit 2.
SELVDD signal is disabled to high impedance.

5 RWPWRN signal is low (RS-232 driver's charge pump is enabled).
RSPWRN signal is high (RS-232 driver's charge pump is disabled).

6 Stop the processor clock. Must have previously been low.
7 Sets BAUDCLKG signal low (disables the 1.8432 MHz crystal

circuit).

F6ED 0- 0h. PHCLK/PHCLKN will change every 1 ROWCLK's.
h PHCLK/PHCLKN will change every 2 ROWCLK's.

2h PHCLK/PHCLKN will change every 4 ROWCLK's.
3h PHCLK/PHCLKN will change every 8 ROWCLK's.

2 Value will be read from 0.062h bit 4.
3 1 Value will be read from 0062h bit 6.
4 1. Value will be read from 0.062h bit 7.
5-7 Reserved.

Figure 5E

U.S. Patent June 27, 1995 Sheet 11 of 16 5,428,790

TIME(SECONDS)

U.S. Patent

45

40

35

30

25

20

15

O

5

O

it is it it is... it is

June 27, 1995 Sheet 12 of 16

Fig. 7B

gi: , ; B, ".

5,428,790

, is life

0.054 11.913 23.771 35.630 47.488 59.346
5.984 17.842 29.700 41.559

TIME(SECONDS)
53.4.17

U.S. Patent June 27, 1995 Sheet 14 of 16 5,428,790

FIGURE 7E

2 MHZ

O. 1098 1.0898 22.0698 33.0498
5.5998 16.5798 27.5598 38.5398

TIME(SECONDS)

U.S. Patent June 27, 1995 Sheet 15 of 16 5,428,790

FIGURE 7F

3 MHZ
o 120

On O

E 100
90
8O

7O

60

50

40

3O

20
O

0.1098 1.0898 22.0698 33.0498
5.5998 16.5798 27.5598 38.5398

TIME(SECONDS)

U.S. Patent June 27, 1995 Sheet 16 of 16 5,428,790

FIGURE 7G

7 MHZ

0.109 1.089. 22.069. 33.04944.029. 55.009 65.989 76.969
5.599 16.579 27.559 38.539 49.519 60.499 71.479

TIME (SECONDS)

5,428,790
1.

COMPUTER POWER MANAGEMENT SYSTEM

REFERENCE TO PRIORAPPLICATION

This is a divisional application of U.S. patent applica
tion Ser. No. 08/087,249, pending, filed Jul. 1, 1993;
which is itself a divisional application of U.S. patent
application Ser. No. 07/436,642 filed Nov. 13, 1989
(now abandoned); which is itself a continuation in part
of U.S. patent application Ser. No. 07/373,440 filed Jun.
30, 1989 (now abandoned).
REFERENCE TO MICROFICHEAPPENDIX

Appendix A, which is a part of the present disclosure,
is a microfiche appendix consisting of 4 sheets of micro
fiche having a total of 383 frames. Microfiche Appendix
A is a listing of computer programs and subroutines
which implement a preferred embodiment of the pres
ent invention. This microfiche appendix contains mate
rial which is subject to copyright protection. The copy- 20
right owner does not object to facsimile reproduction of
the patent document and appendix in Patent Office files,
but reserves all other copyright rights.

BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention relates to a power management device

and power management method for a computer. More
specifically, the invention relates to both hardware and
software for a portable battery powered computer
which enables the computer to draw a very small
amount of electric power.

2. Description of the Prior Art
Low power hardware and software techniques are

well-known in the field of computing. For instance,
hand-held calculators that use very small batteries and
which can operate for long periods from those batteries
are well-known. However, for general purpose comput
ers such as IBM PC compatible computers or similar
computers, low power techniques are not well devel
oped. Small computers, i.e., laptop computers which
can operate for several hours off fairly large batteries,
are well known. However, computers which operate
for a long period from small batteries are not known in
the art. Specifically, it is not known in the art to provide
such an IBM PC compatible computer.
The original IBM PC computers were designed for a

conventional desktop computing environment. Such
computers were meant to draw power from the wall
socket. These computers also typically use electronic 50
circuitry components which consume large amounts of
electric power. IBM PC compatible computers also
include software (e.g., BIOS) which was not designed
to conserve power.
The key elements to IBM PC compatibility are the

ROM BIOS (read only memory basic input-output sys
tem), the hardware architecture, and the operating sys
tem. One operating system for an IBM PC compatible
computer is MS-DOS as provided commercially by
Microsoft. In order for a computer to be compatible to
an IBM PC computer, it is therefore necessary to ad
here very closely to the software interface standards of
Microsoft and IBM. This has disadvantages for low
power computer management software.
The 8086 (IPX86) family of microprocessors from

Intel, which includes the 8088 and 80X86 microproces
sors, is used in IBM PC-XT compatible computers and
includes in its system RAM (random access memory)-

5

25

30

35

45

55

60

65

2
an interrupt table. The interrupt table lists addresses of
software routines to which a computer program is di
rected in response to an interrupt. The IBM PC compat
ible ROM BIOS and MS-DOS operating system are
controlled through a system of hardware and software
interrupts. Hardware interrupts are initiated by provid
ing a signal on one of the processor pins. Software inter
rupts are initiated when the processor executes a spe
cific class of instructions known as software interrupts.
These conventional interrupts include in the prior art an
NMI (nonmaskable interrupt) which is not used exten
sively in the prior art IBM PC compatible computers

In the prior art, NMI, that is, nonmaskable interrupts,
are not really nonmaskable, i.e., always active, because
they can be disabled. The software interrupt table in the
prior art includes a number of addresses, i.e., memory
addresses. An address is provided for each interrupt,
which points to the interrupt handler. That is, one ad
dress points to a memory location where the interrupt
handler is located. Thus for every interrupt there is an
entry in memory which contains the interrupt handler
entry point.

For application programs that are so-called badly
behaved applications programs, the application pro
gram may take over any particular interrupt. Thus,
instead of a particular interrupt vector table entry point
ing to an interrupt handler as intended, the application
program causes an interrupt to be revectored, that is,
reset, to point to another location. Thus, an application
program takes over a particular interrupt by making the
particular entry in the vector table point to the applica
tion program rather than to the ROM BIOS or operat
ing system. Thus the interrupt which is meant to cause
a particular function to be executed is never called be
cause that interrupt vector table entry has been pre
empted by the application program.

In the prior art the software interrupts include param
eters which are passed to particular locations (i.e., regis
ters) in the microprocessor. The interface into the soft
ware interrupts in the prior art IBM PC compatible
computer is defined in a well-known set of standard
published definitions. See for instance The New Peter
Norton Programmer's Guide to the IBM PC & PS/2,
Microsoft Press. Thus, the values held in various micro
processor registers may be replaced by application writ
ers who use this guide, making for programs which are
badly behaved.

Application programs which are badly behaved not
only preempt ROM BIOS services but they also pre
empt operating system services. Thus, one cannot rely
on conventional operating system and ROM BIOS ser
vices to monitor what is occurring in the computer.
Also provided in the conventional IBM PC architec

ture are two interrupts which are relevant to computer
keyboard events. Interrupt INT9 is conventionally gen
erated by the small microprocessor which is typically
provided to control an IBM PC compatible computer
keyboard. Thus, Interrupt INT9 causes information
from the keyboard to be put into a buffer. Interrupt
INT16h (h for hexadecimal numbering) accesses this
information from the buffer and provides it to the pro
gram which invoked the software interrupt instruction.
Interrupt INT16h is therefore a software interrupt
which is invoked typically by application software and
/or MS-DOS to make a request to the keyboard ser
vices software to show status of certain registers such as
waiting for a key to be pressed.

5,428,790
3

For instance, one event which consumes major time
in a computer program is waiting for a key press on the
keyboard of the computer. For a typical application
program running on a computer such as a spreadsheet
or word processing program, if the computer applica
tion program is well-behaved (as described below) the
computer program could simply issue a request to MS
DOS to wait for the next key. MS-DOS could in turn
simply issue a request to the ROM BIOS to wait for a
key press. The ROM BIOS would then simply loop
until it detected a key press.
MS-DOS does not use this procedure. Looping until

a key press Is detected means the application program
can not concurrently perform other functions. Instead
MS-DOS uses a procedure which can be alternated
with other procedures. MS-DOS asks the ROM BIOS
in the computer if a key has been pressed. The ROM
BIOS includes a buffer for storing keystrokes as the

10

15

keys are pressed. MS-DOS loops in this operation of 20
periodically examining this buffer (with other MS-DOS
processing going on in other parts of the loop). The
ROM BIOS cannot simply shut off the first time this
buffer is examined because this would interrupt other
MS-DOS processing and therefore hang up the machine
making it inoperable.

In fact many MS-DOS applications programs are
badly behaved in that they take over the BIOS and
MS-DOS functions called through the use of software
interrupts by revectoring the interrupt to the applica
tion program. Thus, calls to BIOS provided for by
MS-DOS may never be carried out.
Thus in the conventional IBM PC compatible com

puter, it is inherently difficult to perform any software
power management in response to particular MS-DOS
or BIOS operations being carried out by an application
program. That is, if the ROM BIOS interrupt handling
routines are not called, then the conventional MS-DOS
operating system includes no means of implementing
power savings techniques in response to loop operations
such as looking for key presses. This means that IBM
PC compatible computers are not generally available
for use in systems which use small batteries unless the
batteries are to be replaced or recharged frequently (i.e.,
after four or five hours).

Generally the hardware, that is the electronics cir
cuitry, in an IBM PC compatible computer is not typi
cally conserving of electric power either. That is, the
computer circuitry typically operates, i.e., draws
power, even when it is not actually in use. This further
contributes to high power consumption by such a com
puter.
The above disadvantages of IBM PC compatible

computers also apply in many respects to non-IBM PC
compatible computers such as computers sold by Apple
or other companies which are not necessarily IBM PC
compatible. Likewise, the problem of Bypassing MS
DOS commands exists for bypassing commands in
other operating systems such as Unix and OS/2 for
example (Unix is a registered trademark of American
Telephone and Telegraph Company and OS/2 is a reg
istered trademark of International Business Machines
Corporation). Again, these other computers were de
signed for use in a desktop environment where power is
provided readily from a wall socket. Therefore ingen
eral, typical personal computers do not have power
conservation features as a basic element.

25

30

35

45

50

55

65

4.
SUMMARY OF THE INVENTION

In accordance with the invention, a power manage
ment system device and method are provided for a
computer. In accordance with the invention, the com
puter operates in various modes. In each of the modes,
particular hardware elements of the computer are dis
abled. These elements are enabled as needed. The
modes are controlled by both the computer hardware
and software so that to the user the computer appears to
be functioning as if all of the hardware elements were
enabled at all times. Thus the operation of the computer
in terms of the power management system requires no
modification of applications software and is generally
transparent to the user.

In the preferred embodiment the computer is compat
ible to the IBM PC-XT computer and has an 80C88
microprocessor as the central processing unit. In the
preferred embodiment the computer is powered by two
small batteries. The computer operates many hours
from these batteries.

In accordance with the preferred embodiment of the
invention, the power management system of the com
puter includes a number of features. In order to con
serve power and extend the battery life of the computer,
the computer circuitry is partitioned into sections pref
erably based on the need for clock signals of particular
frequencies. The sections are partitioned according to
the particular timing signal (i.e., clock) frequencies that
are required to operate each section. The sections are
also partitioned based on those which require constant
clock signal input versus those which only require clock
signals during certain modes of operation. When there
is no demand for a given clock frequency (as typically
generated by an oscillator), the oscillator is preferably
disabled to conserve power. The main system clock is
stopped when a control program determines that soft
ware currently being processed by a microprocessor is
in an idle state. An idle state exists when the main sys
tem clock which runs the microprocessor can be
stopped without delaying output to a user of the com
puter and the program.
The computer in accordance with the invention is

provided with an enable feature for the starting and
stopping of the main system clock (i.e., timing signal
generator). Also included is a state controller to ensure
orderly starting and stopping of the main system clock.
The state controller manages the oscillator which pro
vides the main system clock signal, thus ensuring that
start and stop requests are fulfilled without allowing
any imperfect clock pulse, i.e., a "glitch,' to reach any
logic circuitry.
The state controller stops the main system oscillator

upon receipt of a so-called sleep request signal. This
request signal comes from a bit in a particular register
accessible to the microprocessor of the computer.
When this bit is set, the microprocessor "clock” is
stopped on the next falling edge of the main system
clock signal.
The state controller will also stop the main system

oscillator in a similar fashion when the state controller
detects a request to inject an external processor clock
signal (such as from a computer peripheral device). This
stops the internal main system clock in a "glitch free”
fashion, i.e., no imperfect clock signals are generated.
The external clock source is synchronized with a slower
clock source, then gated through to the microprocessor
of the computer and other logic in the computer.

5,428,790
5

The microprocessor clock is preferably stopped in
the middle of an input/output write instruction, which
ensures that all the microprocessor address, data, and
control signal lines are in a known state when the micro
processor clock is stopped. This prevents inputs to the
microprocessor and other circuitry from oscillating
unnecssarily, without any need for provision of external
pull-down or pull-up resistors. The elimination of these
resistors is desirable because they undesirably consume
power.
The state controller will preferably start the main

system clock oscillator and, after allowing sufficient
time for the main system clock oscillator to stabilize,
will synchronize it with a slower clock and gate the
clock to the microprocessor when a wake-up request is
received by the state controller.
Wake-up requests may come in the form of a timer

interrupt, a keyboard interrupt, a UART (universal
asynchronous receiver transmitter) interrupt or any
event which generates a nonmaskable interrupt (NMI).
A request to switch from the external processor clock
source back to the internal main system clock is also
handled in this manner. The wake-up requests are all
maskable by manipulating the appropriate bits in a par
ticular register accessible to the microprocessor.

In addition, a DMA (direct memory access) control
ler clock timing signal is also derived from the main
system clock signal. Circuits are provided to gate the
main system clock to the DMA circuits as needed, in
cluding during DMA cycles, system reset, and any
input/output operations of DMA control registers.

In accordance with the preferred embodiment of the
invention, other clock signals are provided to the
UART, which provides serial communications to and
from the computer. Another clock signal is provided
for the computer display, in order to provide signals for
the circuitry which is used to refresh the video display
of the computer. Also, a low frequency clock signal is
provided which is used in various parts of the computer
system.

In accordance with the preferred embodiment of the
invention, the microprocessor may be stopped between
successive keypresses on the keyboard. The micro
processor is stopped after unique software determines
that the application program has responded to the pre
vious keypress and is not performing a computation but
is merely waiting for another keypress. The micro
processor is started again in response to the next key
press. Stopping is accomplished preferably by means of
software as described in more detail below. Stopping
the microprocessor (i.e., not clocking the device) saves
power. When the microprocessor is running (i.e., re
ceiving clock signals), power is consumed by the pro
cessor itself as well as the memory provided in the
system. The processor consumes power when it is re
ceiving clock signals because these clock signals cause
electrical elements within the device to switch. These
elements consume much more power when switching
than when they are static. Additionally, memory de
vices consume more power when they are read from or
written to than when they are idle and not being se
lected.
The preferred embodiment of the invention includes

software which can save power even with so-called
badly behaved application software programs. As de
scribed above, these badly behaved programs seize
control of the hardware, BIOS, and operating system
interrupts in contravention to the usual conventions.

10

15

20

25

30

35

45

SO

55

60

65

6
In accordance with the preferred embodiment of the

invention, circuitry in the computer triggers software
events through the use of nonmaskable interrupts
(NMIs). The NMI is used as a matter of convenience; in
other embodiments, other interrupts are used, or other
means of interrupting instruction flow such as a bus
controller altering instruction provided to the micro
processor. In accordance with a preferred embodiment
of the invention, substantial use is made of the NMI,
which is conventionally provided in the computer but
typically not extensively used in IBM PC-XT compati
ble computers. The NMI is used in accordance with the
preferred embodiment of the invention because it has a
higher priority than most of the other interrupts. Thus a
common entry point is provided for the hardware to
signal to the software that any one of a number of
events could have occurred.
Also provided in one embodiment of the invention is

a trap which detects when the microprocessor will be
sent a particular interrupt. Provision of this trap means
that novel hardware and software can now have control
over what is happening in the computer in spite of badly
behaved applications programs. This is because the
novel system software detects particular hardware and
software events, that is, particular interrupts generated
by hardware (for example, key presses or communica
tion bits coming to a communications port) or software
(for example, an application program looking for key
presses or communication bits).
Thus, in accordance with the invention, before an

interrupt generated by an applications program or by
external hardware is allowed to cause processing, in
stead the BIOS itself may assume control and engage in
preprocessing activity. In the preferred embodiment of
the invention this preprocessing activity allows the
BIOS to determine if the computer should go into a low
power consumption mode.
The invention thus has the advantage of providing a

portable computer which draws extremely low
amounts of electric power. The computer is compatible
with IBM PC-XT application programs and executes
such programs without any need to modify the pro
gram. In the preferred embodiment of the invention,
this advantage is provided by means of particular hard
ware and software.
A general description of the computer in the pre

ferred embodiment, is in commonly assigned U.S. pa
tent application Ser. No. 07/375,721, entitled Portable
Low Power Computer, now abandoned, incorporated
herein by reference.
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a state diagram of power modes in
accordance with the preferred embodiments of the in
vention.
FIG. 2 shows in block diagram form the sectional

power management circuitry in accordance with the
invention.
FIG. 3 shows in block diagram form circuitry in

accordance with the invention.
FIG. 4 shows in block diagram form further circuitry

in accordance with the invention.
FIGS. 5A to 5E show a port map in accordance with

the invention.
FIG. 6 shows a flowchart of the low power manage

ment software.
FIGS. 7A through 7G show patterns of interrupt call

frequency which occurred in three representative appli

- 5,428,790
7

cation programs operating under a variety of condi
tions.

Identical reference numbers in various figures denote
identical or similar structures.

DETAILED DESCRIPTION OF THE
INVENTION

Description of the Power Mode State Diagram
FIG. 1 shows a state diagram of the power modes

provided in the preferred embodiment of the invention.
Two compute modes 10 and 11 are shown in the center
portion of the figure. In low-volt compute mode 10, the
computer draws about 120 milliwatts of power, shown
in FIG. 1 as "120 mw'. This and other numerical speci
fications presented herein are illustrative estimates and
not critical to the invention. In compute mode 10, the
VCO (i.e. the voltage controlled oscillator, not shown)
which provides the main system clock signal is on. The
video display (not shown) of the computer, i.e. the
computer screen, is also on. The UART (not shown)
and the DMA clock (not shown) are off, that is, not
being clocked. The VCO is powered at a low voltage,
in the range of 2 to 3 volts, and thus provides a low
clock speed, on the order of 2 MHz, to the microproces
sor. For many activities, for example responding to data
entry during word processing, a low clock speed re
sponds to the user as well as a higher clock speed re
sponds, and consumes considerably lower power.

If a user makes demands on the computer for consid
erable processing, it is desirable to use a higher clock
speed. Therefore if the computer has remained in com
pute mode 10 for longer than a specified time, currently
preferred at 1.5 seconds, the computer moves to a
higher voltage 5-volt compute mode 11, in which the
VCO operates at about 7 MHz. As in compute mode 10,
the video display is on, the UART is off and the DMA
clock is off. Processing is completed at a faster rate in
compute mode 11.

All other states are accessible directly or indirectly
from one of these compute modes. The computer passes
from compute modes 10 to off mode 12 under two con
ditions. The first condition is when the on/off switch
(not shown) of the computer is switched. The second
condition is a "timeout' condition. The timeout means
that there has been no activity, i.e. computation or key
board activity for a relatively long time. This time is
preferably several minutes and is preferably program
mable, as described below. The computer can be
changed from compute mode 11 to off mode 12 in the
presence of heavy processing by pressing the on/off
switch. Upon again pressing the on/off switch, the
computer will return to the same point in the process
Ing.

In the off mode 12, the computer draws about 1.5
milliwatts of power. In the off mode 12, the VCO is off,
the display is off, the UART is off, and the DMA is off.
But the computer is not truly off because it can respond
to pressing of the on/off switch and returns to compute
mode 10 at the same point in a program which was
being executed when the computer was turned off. The
computer passes from off mode 12 to compute mode 10
when the on/off switch is switched by the user.
The time update mode 14 is reached only from the off

mode 12. However, the time of day is maintained in all
of the various modes of the system. In the off mode,
periodically when a timer tick (derived from a low
frequency clock as described below)is provided by the
timer circuitry (not shown) in accordance with the

O

15

20

25

30

35

45

50

55

65

8
invention, the computer passes from the off mode 12 to
the time update mode 14. In the time up,ate mode 14 the
computer draws approximately 70 milliwatts of power.
The computer is only in the time update mode 14 for a
very brief time, long enough to update the time keeping
functions of the computer. In the time update mode 14
the display, UART, and DMA are all off.
The time of day is updated by the timer which is

derived from a low frequency clock as described below.
When the update of the time of day has been completed
the computer passes from the time update mode 14 back
to the off mode 12.
The computer passes from the compute mode 10 to

the display mode 16 based upon the occurrence of par
ticular hardware inputs. These hardware inputs, as de
scribed below, include: the interrupt INT16h trap, key
board activity, i.e., the user typing on the keyboard, and
timer ticks. These inputs are used to determine if the
operating system or applications program is in an idle
state and therefore waiting for user input. If it is deter
mined that the program is waiting for user input, the
computer passes from compute mode 10 to display
mode 16. In the display mode 16, the computer draws
approximately 50 milliwatts of power. Thus when the
computer is in the display mode 16the microprocessor
itself is not running (i.e., not being clocked). These same
events can move the computer from 5-volt compute
mode 11 to display mode 16. The computer passes from
display mode 16 to compute mode 10 as a result of a
keyboard activity (i.e., the user presses a key) or a timer
tick. The computer, when in use, frequently passes from
compute mode 10 to display mode 16 in order to con
serve the relatively large amount of power used in com
pute mode 10. Thus most of the time when the com
puter is used it is in display mode 16, and the micro
processor is not running even though the display is on.
In the display mode 16the VCO is off, the display is on,
the UART is off, and the DMA is off.
The computer also passes from the compute mode 10

to and from the DMA (direct memory access) mode 18.
In DMA mode 18 the computer draws approximately
150 milliwatts of power. The computer passes from
compute mode 10 to DMA mode 18 upon receipt of a
DMA request. When the DMA processing is completed
the computer passes from DMA mode 18 back to com
pute mode 10. In DMA mode 18 the VCO is on and
operating at approximately 2 MHz, the display is on, the
UART is off, and the DMA clock is on.

Similarly from compute mode 11, the computer
passes to DMA mode 17. In DMA mode 17, the VCO
is on and operating at approximately 7 MHz, the display
is on, the UART is off, and the DMA clock is on. In
DMA mode 17, the computer draws approximately 450
milliwatts of power, the higher power being a result of
the higher voltage of the system power supply and the
higher switching speed resulting from the higher VCO
speed.
The computer also passes from compute mode 10 to

and from communications mode 20. For simplicity,
these paths are not shown in FIG. 1. As is shown, the
computer also passes from compute mode 11 to and
from communicate mode 20 in response to a request to
access the UART, and completion of the UART access,
respectively.
When the computer first enters communicate mode

20, the voltage is at the higher level, causing the VCO
to operate at the 7 MHz speed. Upon detection of a loop

5,428,790
activity (explained more fully later), the computer may
be programmed to move to communicate and display
mode 24, in which the VCO is turned off, thereby sav
ing power. Communicate and display mode 24 uses only
100 milliwatts of power. In one embodiment this is the
mode occupied by the computer the majority of the
time a user is sending or receiving a file by modem. The
computer passes from communicate mode 20 to com
municate and display mode 24 upon similar conditions
for which it moves from compute mode 10 or 11 to
display mode 16.
From communicate and display mode 24, a request to

access the UART causes the computer to move to low
voltage communicate mode 21, in which the VCO is
turned on but operates under the low voltage, at ap
proximately 2 MHz. In communicate mode 21 the
UART and display are turned on. If there is a stream of
bits which lasts longer than a specified time, on the
order of 50 milliseconds to a few seconds, the computer
moves to 5 volt communicate mode 20. Otherwise,
upon completion of the UART access, the computer
returns to communicate and display mode 24.
The computer reaches the communicate and DMA

mode 22 only from the communication mode 20. In the
communicate and DMA mode 22 the computer draws
approximately 500 milliwatts of power. The computer
passes from the communicate mode 20 to the communi
cate and DMA mode 22 upon receipt of a DMA request
when in communicate mode 20. When the DMA re
quest is done the computer passes back to communicate
mode 20. In the communicate and DMA mode 22 the
VCO is on, the display is on, the UART is on and the
DMA is on.

Description of Sectional Power Control On Demand
In accordance with the invention, a feature called

sectional power control on demand is provided. This
feature provides that each section of the computer may
be powered up only as needed. The sections are pow
ered up accordance with the state diagram as shown in
FIG. 1. FIG. 2 shows in block diagram form the cir
cuitry associated in the preferred embodiment of the
invention with the sectional power control on demand
feature. The object of this feature is to isolate portions
of the computer circuitry (i.e., hardware) which can be
powered independently. Thus power is applied only to
each section when needed, leaving each section pow
ered down (i.e., turned off) when it is not needed. Pow
ering down sections of the computer when inactive
increases the life of the batteries.

In one preferred embodiment, three portions of the
computer, the display, the communication channels and
the CPU, have independent controls allowing them to
be powered up or clocked as needed. In the preferred
embodiment of the invention, both hardware and soft
ware together determine electric power demand and
manage these independent controls.

First, for the display, the power supply circuit 32 as
shown in FIG. 2 can be turned off. Also, the LCD
driver chips 36 which drive the actual display 70 can be
disabled. The clock oscillator 38 for the display can be
disabled. The software performs the above functions by
controlling a bit in a particular register F6EC <bit
3) accessible to the microprocessor 40 in the computer
(see port map, FIG. 5E). FIGS. 5A to 5E are a defini
tion of the I/O map wherein Table 1 shows the ports
included that are compatible with the IBM PC/XT,
while Tables 2 and 3 show the specific I/O for the

5

20

25

35

45

50

55

60

65

10
SYSTEM ASIC and PERIPHERAL ASIC respec
tively of the present invention. Second, for the serial
communications portion of the computer, the power
supply circuits (not shown) can be disabled by register
F6EC<bit 5d. Also the oscillator (not shown) which
generates a timing signal for the UART 44 can be dis
abled by register F6EC<bit 7d (see port map, FIG.
5E). Third, the clock for controlling CPU 40 can be
turned off, as discussed above, thereby not switching
transistors which respond to the software being exe
cuted if the software is in an idle loop.
An alternative embodiment includes at least one

memory card 48, 50 which provides the nonvolatile
memory. A power pin 48B, 50B of each memory card
48,50 is controlled, allowing a computer power supply
(not shown) to provide power to memory chips (not
shown) which are internal to each memory card 48, 50.
A fourth portion of the computer comprising the mem
ory cards may also be powered up only as needed. Two
memory cards 48, 50 are shown; others may be pro
vided. The power to each memory card 48, 50 is turned
off by a solid state switch 48C, 50C. The switches 48C,
50C, one of which is provided for each memory card
48,50 are controlled automatically based on an address
decode, or are controlled by a bit in a particular register
accessible to the microprocessor 40. The memory cards
48,50 as used in the preferred embodiment of the inven
tion are described in commonly assigned U.S. patent
application Ser. No. 07/374,691, entitled A Method and
Apparatus for Information Management in a Computer
System, now abandoned, incorporated herein by refer
eCe.

As shown in FIG. 2, the CPU 40 (i.e., the central
processing unit or processor, preferably a microproces
sor), is connected to address lines 52, data lines 54, and
control lines 56 which carry signals for decoding valid
addresses. The microprocessor 40 is connected by these
lines 52, 54, 56 to the address decode logic and specific
registers circuitry 60. The circuitry 60 as shown in
cludes all the logic needed to decode addresses in the
microprocessor 40. Some addresses cause enable and
select signals during a microprocessor instruction pro
cessing cycle. Other addresses correspond to specific
ports accessible to the microprocessor 40 (see port map,
FIG. 5). When a specific port address is decoded along
with an instruction to perform an input/output write,
then the microprocessor data is latched into a register,
which is referred to as a specific register. If the opera
tion is a read operation, then this logic circuitry 60 gates
the appropriate data onto the microprocessor bus, i.e.,
the data line 54 to the microprocessor 40.

Display Power Management
The display controller logic circuitry 62 includes all

the logic which allows the computer to emulate the
conventional IBM PC computer compatible display
standards known as MDA and CGA described in The
New Peter Norton Programmer’s Guide to the IBM PC &
PS2. This circuitry 62 also generates the clock timing
signals 64 needed by the display LCD driver circuitry
36 from the display clock signal 66 provided by the
oscillator 38 for the display clock. The oscillator 38 for
the display clock is the actual oscillator which generates
the timing for the display clock signal 64. The power
control signal 68 for the display 70 enables the oscillator
38 for the display clock signals 64.
The LCD drivers 36 are the driver circuits which

demultiplex the data from the display controller logic

5,428,790
11

circuitry 62 and present the row and column data 72 to
the LCD display glass 70. The LCD display glass 70 is
the actual LCD physical display which the user of the
computer views. The LCD drivers 36 are powered by
the display power supply 32. See commonly assigned
U.S. patent application Ser. No. 07/374,340, entitled
Power System and Scan Method for Liquid Crystal
Display, invented by John Fairbanks, Andy E. Yuan,
and Lance T. Klinger, now U.S. Pat. No. 4,130,703
issued on Jul. 14, 1992 incorporated herein by reference.
The display power supply 32 is a switching power sup
ply which generates all the necessary voltage levels to
drive the LCD display glass 70. The display power
supply 32 is controlled by a display power control sig
nal 74 provided from the address decode logic and
specific registers circuitry 60. The display power con
trol signal 74 thus turns off the display power supply 32
when the display is not in use. The LCD display glass 70
receives demultiplexed row and column data 72 from
the LCD drivers 36, and obtains its power 68B from the
display power supply 32.

Communication Power Management
The UART 44 produces TTL (transistor-transistor

logic) voltage level signals 80 which are translated so as
to conform to conventional communications standards
such as RS-232-C. The UART 44 also requires that
incoming data be translated back to TTL voltage levels.
The serial channel voltage level translator circuitry 82
accomplishes this function. The serial channel voltage
level translator 82 translates voltage levels between
those of one of the conventional communications stan
dards 84 as described above and TTL voltage levels 80.
The non-TTL voltage levels 80 are generated by the
serial channel voltage level translator circuitry 82 using
switching techniques as is conventional. The power
supply of translator 82 will operate only when enabled
by the serial communications power control signal 86,
which is preferably under software control as a specific
register bit F6EC<7 bit) (see port map, FIG. 5E).
The external serial connector 88 is a connector pref

erably located externally to the case of the computer.
This connector 88 connects serial devices to the com
puter. All signals 84 at this connector are non-TTL and
require translation of voltage levels before reaching the
UART 44.

Memory Card Power Management
In one embodiment, a solid state switch 48C, 50C

controls the power pin 48B, 50B of each of the memory
cards 48, 50 as described above. An enable signal 48D,
50D, derived from decoding of memory addresses by
the address decode and specific register circuitry 60, or
by a bit in a specific register (see port map, FIG. 5D)
controls the solid state switches 48C, 50C. The enable
signal 48D, 50D turns power on to a memory card 48,
50 only when that particular memory card is to be ac
cessed.
The above described circuitry is controlled by a con

trol program executed by the microprocessor 40, i.e.,
the CPU. This control program is preferably an assem
bly language microprocessor program. Further details
of the operation of this control program as it pertains to
power management are provided below. Hereinafter
follows a brief description of the operation of this con
trol program.
With regard to the display power supply 32, the con

trol program detects either a user request to turn the

10

15

20

25

30

35

45

50

55

65

12
computer off (by means of an on/off switch) (not
shown) or detects inactivity (i.e., an idle state) of the
computer over a period of time. A particular bit is
changed in a specific register accessible to the micro
processor 40 turning off the display related circuitry
register F6EC<bit 3) (see port map, FIG. 5E). The
control program detects either a user request to turn the
system on (by means of the ON/OFF switch) or a pro
grammed event which is to turn the system on.
With regard to the serial communications power

supply software, usage of the UART 44 is detected
either by a service request to the control program or by
an interrupt, as described below. A particular bit is
changed in a specific register F6EC (bit 5) accessible
to the microprocessor 40 turning on the circuitry re
lated to communications (see port map, FIG. 5E). The
termination of communications services by the user of
the computer is detected either by a request to the con
trol program or by detecting a lack of communications
activity. A particular bit is changed in a specific register
F6EC<bit 7d accessible to the microprocessor 40
turning off the hardware circuitry relating to communi
cations (see port map, FIG. 5E).

For the memory card power supply, memory card
48, 50 access by the computer is detected either by a
service request to the control program or automatically
through address decoding. If the automatic mode is not
in use, then a particular bit is changed in a specific regis
ter accessible to the microprocessor 40 thus turning on
power to the memory card 48,50 for the duration of the
access to the memory card.

Schematic diagrams for the circuitry described in this
patent disclosure are included in commonly assigned
U.S. patent application Ser. No. 07/375,721, entitled
Portable Low Power Computer now abandoned, incor
porated herein by reference. Flow charts for the power
management related events are shown here in FIGS. 3
and 4. FIG. 3 shows hardware events which cause the
microprocessor clock to turn on or off and FIG. 4
shows software events which cause the microprocessor
clock to turn off or prevent turning off the microproces
sor clock.

Description of the Hardware Activity Circuitry
In the preferred embodiment of the invention, in

order to conserve power and extend the battery life of
the computer, the hardware of the computer, i.e., the
circuitry, as described above is partitioned into sections
based on the need for clock signals. The oscillators
which provide the clock signals to different portions of
the computer are enabled and disabled based upon the
demand for their services. Disabling an oscillator when
it is not needed conserves power. In accordance with
the invention, those oscillators which are dormant, i.e.,
disabled at a particular time, are started in a fashion so
as to be glitch free, that is to provide clock signals only
when stable. Disabling an oscillator when it is not
needed thus conserves power. Since the oscillators take
a period of time after being turned on to stabilize, cir
cuits are provided to start the oscillator, then wait an
appropriate amount of time before allowing the oscilla
tor signal to reach any of the logic circuitry which it
drives. For the oscillator which generates the timing
signal for the microprocessor clock, a voltage con
trolled oscillator is provided having a frequency which
is a function of the system power supply output voltage.
Thus since the power supply voltage is under software

5,428,790
13

control, the microprocessor clock frequency is also
under software control.

Detecting whether the computer is in an idle state is
important when determining if it is appropriate to stop
the clock signal to the microprocessor. The computer
processor 40 is in an idle state when it is not acting upon
user generated input. In order for the control program
in the microprocessor to differentiate between an idle
state and an active state, the microprocessor control
program must have knowledge of hardware activity.
Circuitry is provided in accordance with the invention
to monitor the computer circuitry (see FIG. 2) and alert
the control program by way of an interrupt when par
ticular hardware events occur.

In one preferred embodiment of the invention, four
hardware events are monitored by the control program
and appear to the control program as nonmaskable
interrupts (NMIs). These four hardware events are the
systern timer tick, keyboard activity, communications
port activity, and on/off switch activity.
FIG. 3 shows a block diagram of hardware events

monitored by the power management control program
of the present invention.
As in conventional MS-DOS compatible computers,

programmable interval timer 107 is provided for gener
ating timing signals for which the interval can be pro
grammed. According to the present invention, a second
timer 98 is provided for use by the power management
system of the present invention which can be pro
grammed to generate a timer tick 100 at predetermined
intervals. The timer tick 100 is used as a time reference
and a watchdog timer. The timer tick 100 provides
periodic ticks 100 which are treated by the BIOS as
nonmaskable interrupts (NMIs) which are used by the
BIOS (basic input output system) control program in
maintaining control of the system despite badly be
haved application, programs, such as word processing
or spread sheets, running on the computer.
The presence of keyboard activity causes most key

strokes to be stored in a buffer until acted upon by the
software. Typically the application program cycles
periodically through a loop which includes looking for
keyboard activity (looking for entries in the keyboard
buffer). For example, if an application program is load
ing a large file onto disk or other mass storage memory,
the program may also periodically look for pressing of
certain keys so that the user has the opportunity to stop
the operation of writing to memory before the opera
tion is complete. Such opportunities for the user to
interrupt the program while it is performing other func
tions are commonly provided in application programs.
At other points in a program, there may be no other
functions happening except that the program is waiting
for a keystroke.

Since the microprocessor speed is typically much
greater than the typing speed of the user of the com
puter, it is desirable to conserve power by stopping (i.e.,
not clocking) the microprocessor between keystrokes
when the user is typing and the program is performing
no other function except processing the response to the
typing, which typically occurs in a small part of the
time between keystrokes. In this situation, the software
is in an idle state, that is, the microprocessor can be
stopped without delaying the computer's response to a
user. In order for the computer to stop and restart the
microprocessor, the computer must include hardware
to restart the microprocessor in response to an external

O

5

20

25

30

35

40

45

SO

55

65

14
event. The microprocessor goes into the compute mode
as described above, as a result of a keypress.
Note that in the preferred embodiment of the inven

tion the so-called power on/off switch 114 does not
actually turn power on and off but merely provides
information to the control system. Since the computer
itself is always powered, there is preferably no conven
tional power switch. Instead the computer is provided
with a switch which the user uses to toggle between the
off and on states. In the off state the display is off, key
strokes are ignored, the processor is stopped and timer
ticks occur at long (i.e., about one minute) intervals.
However the computer itself is not truly off. An NMI
can be generated when the on/off switch is switched off
so that the control program will know that the user
wishes to toggle the computer from the off to the on
state. Pressing the on/off switch when the computer is
switched off causes the computer to move to the com
pute mode.
As shown in FIG. 3 in block diagram form, the cir

cuitry of the preferred embodiment of the invention
operates as follows. A nonmaskable timer interrupt 100
(NMI) is provided by a low frequency oscillator con
nected to timer 98 which is always running (as long as
the batteries are installed). The frequency of the low
frequency oscillator is divided down and can generate
interrupts either every 54.9 milliseconds or approxi
mately every minute. The choice of the interrupt timing
interval is programmable. An interrupt timing interval
shorter than 54.9 milliseconds allows faster cutoff of the
microprocessor clock in response to an idle state, with a
consequent saving of power. However, the interval
should De long enough that multiple events indicating
idle activity can be observed within a single interval.
Two interrupts can be generated as a result of this

divided frequency. The first interrupt is designated
IRQ0, and is compatible with the standard IBM PC
timer interrupt which is connected as the highest prior
ity interrupt (IRQ0) on an 8259-compatible interrupt
controller. As shown in FIG. 3, a standard IBM com
patible programmable interval timer 107 generates this
IRQ0 interrupt, which is sent to 8259 interrupt control
ler 105, which in turn sends interrupt 103 to the inter
rupt port of CPU 40. This interrupt is maskable and
compatible to that in the conventional IBM PC-XT
computer and is used by programmers to implement
such functions as updating the time-of-day clock and
initiating any software activities which are programmed
to respond to the timer tick. The second interrupt is a
power management timer interrupt 100. Although this
interrupt 100 can be generated from the same timer 107
as used to generate the IBM PC compatible interrupt
IRQ0, the preferred embodiment uses a second power
management timer 98 to generate interrupt 100. This
provision of a second timer allows the timer interval of
timer 98 to be varied by the control program of the
present invention while the interval of IBM compatible
timer 107 is varied by programmers of IBM and DOS
compatible computer programs.
This timer interrupt 100 is read by NMI interrupt

controller 101 as a nonmaskable interrupt. NMI inter
rupt controller responds to interrupt 100 by sending a
nonmaskable interrupt 102 to the NMI port of CPU 40.
This interrupt 102 takes priority over the 8259-compati
ble interrupt. This interrupt 102 has an indicator bit in a
particular register F6E7<bit 6) accessible to the mi
croprocessor 40 to allow software to determine that a
timer 100 interrupt was the cause of the nonmaskable

5,428,790
15

interrupt 102 (see port map, FIG.5C). The timer inter
rupt 100 can be programmed to automatically start the
clock (not shown) to the microprocessor 40.
Another type of interrupt is the keyboard interrupt.

When the keyboard circuits are enabled and scanning
the keyboard, a signal is generated by keyboard control
circuitry 106 any time that a key is pressed, released, or
pressed long enough for an antomatic repeat. Two in
terrupts are generated when keyboard activity is de
tected. The first interrupt is designated IRQ1. This is
the conventional IBM PC-XT keyboard interrupt
which is connected in a conventional IBM PC-XT com
puter as the second highest priority interrupt (IRQ1) on
the 8259 interrupt controller. As shown in the embodi
ment of FIG. 3, the IRQ1 interrupt generated by key
board control circuitry 106 is provided to 8259-compat
ible interrupt controller 105, This interrupt is maskable
by the 8259-compatible interrupt controller 105 in re
sponse to a masking signal (not shown) equivalent to
interrupt masks 110 and is IBM PC-XT compatible. If
enabled, interrupt IRQ1 causes interrupt controller 105
to send an interrupt 103 to CPU 40.
The second interrupt is the keyboard NMI interrupt

104. It is necessary to provide a separate interrupt to
interrupt controller 101 which does not pass through
CPU 40 so that keyboard activity can be detected when
CPU 40 is not being clocked, so that the clock to CPU
40 can be turned on in response to a key press. Further,
certain keys are provided for which the IRQ1 interrupt
is not responded to. For example, a key combination for
controlling screen brightness generates a keyboard in
terrupt 104 which causes NMI interrupt controller 102
to turn on CPU 40. But this particular key combination
when read by CPU 40 initiates other hardware activity
for controlling screen brightness and does not cause
8259 compatible interrupt controller 105 to generate an
interrupt 103 to CPU 40. Interrupt controller 101 re
sponds to a keyboard NMI interrupt 104 by generating
an NMI 102. This interrupt 102 takes priority over the
8259-compatible interrupts 103 and places an indicator
bit in a particular register (F6E7 <bit 7d.) accessible to
microprocessor 40 to allow software to determine that a
keyboard interrupt 104 was the cause of the NMI (see
port map, FIG. 5D). The keyboard interrupt 104 can be
programmed to automatically start the clock to the
microprocessor 40.

In the embodiment of FIG. 3, power management
can also respond to activity on the communications port
of the computer. UART controller 109 In response to
activity on the communications port, in addition to
generating IBM compatible interrupt signal IRQ4,
which causes 8259-compatible interrupt controller 105
to generate CPU 40 interrupt 103, UART controller
109 generates a UART NMI 117, which causes NMI
interrupt controller 101 to generate NMI interrupt 102
which restarts the clock to CPU 40. This ability to
restart the CPU clock in response to UART activity
allows the CPU clock to be turned off between bytes of
information coming to or from the external port of the
computer.
The on/off switch 114 when pressed generates an

NMI 116. An indicator 112 is provided in a particular
register F6EA<bit 0d accessible to the microproces
sor 40 to indicate that the on/off switch 114 was the
cause of an NMI (see port map, FIG. 5D). An indicator
112 is also provided in a particular register accessible to
the microprocessor 40 to indicate the current state of
the on/off switch 114. The on/off switch interrupt 116

10

15

20

25

30

35

45

50

55

60

65

16
can be programmed to automatically start the processor
40 clock.
The above described circuitry operates with the fol

lowing software features. As shown in FIG. 3, timer
interrupt 100 is presented to interrupt controller 101,
and does not interfere with application programs which
use the IRQ0 interrupt. In another embodiment, not
shown, the timer interrupt is presented on the IRQ0 pin
of the 8259-compatible interrupt controller 101 and is
IBM PC compatible. In this case, timer interrupt 100
may be used for determining the time of day as well as
responding to other application program commands. In
the embodiment of FIG. 3, the timer tick 100 interval is
programmable to switch between the IBM PC-XT
compatible 54.9 millisecond time interval and a one
minute (approximately) time interval for power man
agement and is not accessed by application programs.
When the computer is in the off mode, the one minute
interval is more desirable because it causes less proces
sor 40 activity and thus less power consumption. The
timer interrupt NMI 100 may be enabled by changing a
particular bit in a register (F6E9<bit 4d) accessible to
the microprocessor 40 (see port map, FIG. 5D). The
timer interrupt 100 can be used by the control program
to maintain command of the system even if an applica
tion program being executed revectors the timer inter
rupt IRQO.
With regard to the keyboard interrupt circuitry 106,

interrupts 104 presented on the IRQ1 pin of the 8259
compatible Interrupt Controller 105 are IBM PC com
patible and may be used for keyboard services (respond
ing to key presses). The keyboard interrupt NMI 104
also can be used by the control program to maintain
command of the system even if a program revectors the
service routine for the 8259-compatible Interrupt Con
troller 105. In order to conserve power, the micro
processor 40 clock may be stopped when it has been
determined that a program is waiting for keyboard
input. When an NMI 104 is generated as the result of
keyboard activity, the processor 40 clock will restart
again and the control program can allow processing to
continue.
With regard to the on/off switch 114, once a user has

finished using the computer for a period of time, the
user can signal the control program that the user is
finished by activating the on/off switch 114. When a
user wishes to use the computer, he may activate the
on/off switch 114 requesting the control program to
start up the computer and resume exactly where he left
off his previous usage. When the switch 114 is activated,
an NMI 116 is generated as described above. An NMI
routine is provided which will then determine that the
on/off switch 114 caused the interrupt by examining the
appropriate indicator 112 bit in a register F6EA <bit
0) accessible to the microprocessor 40 (see port map,
FIG.SD). The NMI routine then debounces the switch
by repeatedly examining the real time status of the on/-
off switch 114 located in the particular register accessi
ble to the microprocessor 40 until the signal is stable.
Once the switch 114 has been debounced, the control
program can move the system between the off and
compute modes.
With regard to FIG.3 as described above, the micro

processor 40 address lines 54, data lines 52 and control,
lines 56 are used to decode valid addresses for the cir
cuitry as shown. The address decode and specific regis
ters 60 include all the logic to decode the microproces
sor addresses. Some addresses are used as interrupt

5,428,790
17

masks 110. Other addresses correspond to status indica
tors 112 which the microprocessor 40 can read to deter
mine the source of the interrupt. With regard to the
interrupt controller 101, only those interrupts associ
ated with power management are shown in FIG. 3. The
interrupt controller 101 monitors all interrupt sources.
If an interrupt 100, 104, 116 or 117 takes place then an
NMI 102 is generated only if the interrupt 100, 104,116
or 117 has been enabled as indicated by interrupt masks
110. The NMI interrupts 100, 104, 116, and 117 are
enabled by changing the appropriate bits in a specific
register such as F6E8 and F6E9 accessible to the micro
processor 40 (see port map, FIG. 5D). If an interrupt
100, 104, 116 or 117 is enabled and does occur, the
source of the interrupt can be determined by examining
the interrupt indicators 112 provided to the interrupt
controller 101 through specific registers 60 accessible to
the microprocessor 40.
With regard to the timer 100, this is the above men

tioned system timer used for determining time of day
and watchdog timer functions. The interrupt controller
101 may be programmed to cause an NMI 102 for each
tick 100 of the timer 98. With regard to the keyboard
control 106, the interrupt controller 101 may be pro
grammed to cause an NMI 102 with each keypress, key
release, or key repeat. With regard to UART Control
109, the interrupt controller 101 may be programmed to
cause an NMI 102 with each receipt of a signal at the
communications port. With regard to the on/off switch
114, the interrupt controller 101 is programmed togen
erate an NM 102 any time this switch is activated.

Description of the Software Activity Detecting
Circuitry

The above described interrupts provide several
means for returning the computer to the higher power
compute mode from one of its low power modes. The
greater problem is when to take the computer out of the
higher power compute mode, thereby extending battery
life without inconveniencing the user. The problem is to
determine when an executing software program is in a
loop (in compute mode) looking for an external event
such as a key press or a port signal and can be halted
without halting desired operations in progress. In order
to recognize unnecessary loop activities, it is necessary
for the power management system of the present inven
tion to anticipate how a software programmer will have
written the code to place the program into one of these
loops, and determine when the program can be safely
halted without halting useful operations.
The badly behaved applications programs, which

include many of the commonly available commercial
application programs, often fulfill their input/output
needs by direct hardware control rather than through
the BIOS services. These badly behaved programs can
prevent control program intervention and hence hinder
system power management. In order to maintain the
desired control of the system in accordance with the
invention, the control program monitors various soft
ware activities of the application programs.

For determining when the microprocessor clock can
be turned off during the execution of an application
program, particular circuitry is included in the com
puter in accordance with the invention to detect the
activity of software application programs. When a par
ticular sought for activity is detected an NMI is gener
ated if enabled.

O

15

20

25

30

35

45

50

55

60

65

18
As shown in FIG. 4, there are two kinds of software

activities monitored by the power management system
of the present invention. UART clock control monitor
128 monitors a software activity of waiting for a byte of
information from the communications port or waiting
for the proper time to place a byte of information on the
communications port. Similarly, INTT16h trap 124
monitors a software activity of either waiting for a key
to be pressed or looking at the keyboard buffer to see if
a key press is stored. This interrupt INT16h is conven
tionally used for keyboard services on IBM PC compat
ible computers. Trapping a program using INT16h will
allow the BIOS control program in the computer to
maintain control of the system and thus continue to
conserve power by stopping the processor clock be
tween key presses.
Other software application program activities may be

interspersed with activities for which it is otherwise
possible to turn off the processor clock. When these
activities are occurring, the microprocessor clock
should not be turned off because the application pro
gram is not in an idle state and turning off the clock
would delay the computer's response to the user. When
these other activities are occurring, the microprocessor
clock is not turned off in response to the NMI 126 gen
erated by UART clock control interrupt 128 or the
INT16h NMI interrupt 122 generated by an INT16h
trap 124.

Activities monitored by the novel BIOS control pro
gram embodiment of FIG. 4 are an I/O read/write
(communication with external devices such as a parallel
printer, external memory, or other devices not handled
by the UART) as monitored by I/O read/write monitor
132, UART activity (successive bits in a single byte sent
to an RS-232 port) as monitored by UART activity
monitor 134, waiting for a tick of the programmable
interval timer 107 as monitored by programmable inter
val timer 136, writing to a screen, as monitored by Video
access monitor 138, and writing to or reading from disk,
as monitored by mass storage monitor 111. Mass storage
monitor 111 is shown in both FIG.3 and FIG. 4 because
the single bit of data provided by mass storage monitor
111 indicates activity of both hardware and software.
Additional instructions which are not shown in FIG. 4,
but can also be monitored include CPU opcodes (for
example, multiply).
As provided by the control program, the CPU places

on the address bus 54 and control lines 56 the address of
these registers 132, 134, 136, 138, and 111. Data are in
return provided on data lines 52 indicating to CPU 40
the status of the activity being examined.
When any of these activities are being performed by

the application programs, related bits are set in address
decode and specific registers 60 through data line 52b,
and prevent the turning off of the CPU 40 clock. By
detecting activities requiring the microprocessor clock
to be running interspersed with other activities which if
alone would not inconvenience the user if the clock
were off, it is possible to use lower criteria for repeated
activity of the INT16h trap and UART clock control in
determining when to turn off the clock.
The reason the programmable interval timer activity

becomes a reason not to turn off the clock in spite of
apparently idle activity, is that programmers use this
programmable interval to control the speed of other
events, for example movement of objects across the
screen in a game program, and turning off the computer
would interfere with the rhythm of the program. Fur

5,428,790
19

ther, when the program was turned back on, the loop
would be entered again, such that programs using the
programmable interval timer could not be operated
under the power management system of the present
invention.
The following describes the circuitry 124 and 128

which looks for the INT16h and UART software activ
ities. First, regarding the INT16h trap 124, a software
INT16h instruction causes the microprocessor 40 to
read four bytes from the computer memory (not shown)
starting at the address 58h bytes from the beginning of
the interrupt vector table. The INT16h interrupt 122 is
intended to trap a software event that is the execution of
the INT16h instruction. Since each interrupt vector
occupies four bytes in the interrupt vector table, cir
cuitry 124 is provided to monitor the first byte of the
table entry for INT16h, which is located 58h bytes from
the beginning of the interrupt vector table in low mem
ory. Any read of data by CPU 40 from this memory
address can cause an NMI 122. If an interrupt 122 is
generated, an indicator bit in a particular register (F6E
4<bit 7d.) accessible to the microprocessor 40 is set
(see port map, FIG.5C).
The novel software associated with trapping typical

software events functions as follows. With regard to the
INT16h interrupt 122, the goal, as described above, is to
trap a software program which has issued the INT16h
instruction. Since this interrupt 122 is typically used for
keyboard servicing, intercepting an INT16h instruction
allows the control program to detect an applications
program looking for keystrokes. If the novel control
program of the present invention obtains an NMI 122
caused by INT16h, the control pro, ram examines the
argument (i.e., a particular INT16h service) passed to
the INT16h interrupt handler and indicates what the
calling applications program was trying to accomplish.
The simplest function for which power saving can be

initiated is the call to wait for a key to be pressed. If the
calling applications program wanted to wait for a key to
be pressed, then the microprocessor can be stopped
immediately until a key is pressed. However, if the
applications program is periodically checking the key
board buffer with an INT16h call to see if a key has
been pressed, then a guess may be made based on, for
instance, statistics (i.e., how many times the INT16h
interrupt 122 was invoked per time period) to decide if
and when the processor 40 clock should be stopped.

Since the display controller logic is designed to con
serve power also, (see commonly assigned U.S. patent
application Ser. No. 07/374,884, entitled Video Image
Controller for Lower Power Computer, invented by
Leroy D. Harper, John W. Corbett, Douglas A. Hooks,
Grayson C. Schlichting, Renee D. Bader, and John P.
Fairbanks, now abandoned, and incorporated herein by
reference) certain control program intervention may be
required when software application programs access
the video display of the computer. Some application
programs allow for a user to interrupt the application
program while the application program is in the midst
of writing to the screen. These application programs
will insert INT16h calls into other screenwriting activi
ties. Such INT16h calls should not be used to turn off
the microprocessor. Means for distinguishing INT16h
calls during screen writes from INT16h calls in other
loop activities waiting for outside input are discussed
later. However, as discussed above under display power
management, the present invention allows for the mi
croprocessor clock to be turned off while the screen is

10

15

20

25

30

35

45

50

55

60

65

20
being refreshed but its contents are not being changed.
The screen refresh is not handled by the microprocessor
and can proceed normally even though the micro
processor is turned off. Thus, the display controller
controls two functions, generating characters to be
displayed on the screen which requires the micro
processor to be on, and refreshing a static screen which
does not require the microprocessor to be on. A bit is set
to alert the control program of the display controller
status, in particular when the display controller is per
forming a screenwrite which requires the microproces
Sor to be on.

Applications programs which use the UART directly
without the aid of BIOS would find the communica
tions system unstable or unusable when used with the
power management system of the present invention if
no provision were made for stabilizing the lock oscilla
tor before connecting the clock. In order to assist such
applications programs, an NMI is enabled to cause a
delay loop when a write or read from the UART oc
curs. With regard to the UART interrupt 126 shown in
FIG. 4, any read or write to an address specific to the
UART 128 will cause an NMI 126 if enabled by chang
ing an appropriate bit in a particular register accessible
to the microprocessor 40. This information is used by
the control program to monitor the start-up of the
UART clock oscillator to ensure that the UART baud
clock oscillator (not shown) is stable before a program
is allowed to proceed with further UART activity. This
information is also used by the control program to
know when another applications program is utilizing
the UART through direct hardware control techniques.
This is not possible on a typical prior art IBM PC-XT
compatible computer.

Power Management Software
The conventional ROM BIOS functionality available

in prior art computers is extended in accordance with
the present invention by means of additional software
functions and services, which are accessed by any appli
cation program through a conventional interface of
software interrupts as used by ROM BIOS and MS
DOS. The IBM PC-XT compatible ROM BIOS func
tion designated "get keypress' operates nonconvention
ally in accordance with the invention to power off as
much of the computer system as possible at any one
time, instead of sitting in an idle loop as is done in the
prior art computers. This function is linked to circuitry
so that the enhanced software is invoked when a key
press is detected. The conventional IBM PC compatible
ROM BIOS function “get keyboard status' is modified
so that a count of the number of times a call is made to
this function over a given time period is monitored.
After a certain time, it is safe to assume that the applica
tion program is idle, that is, waiting for user input. If the
conditions of the algorithm are satisfied then it is safe to
stop the microprocessor until a key is pressed. The
microprocessor may be stopped whenever there has
been no keyboard or significant microprocessor com
puting activity for a given time, i.e., preferably approxi
mately 100 milliseconds.
The algorithm for determining when the micro

processor can safely be shut off according to the above
requirement for a given time is to count the number of
times an INT16h call has been made during an interval
between timer ticks, and shut off the microprocessor
when the number exceeds a specified value.

5,428,790
21

However, it is not preferred to check for an applica
tion program being haltable simply by counting the
number of times the program has used INT16h to check
the keyboard buffer since the last key press. An absolute
number of checks has been shown with a variety of
application programs either to cause the computer to
turn off the program when other significant computa
tion is going on (a condition unacceptable to the user) in
the case when the number of checks between timer ticks
has been set too low, or to cause the computer to remain
on when the program is in a loop (a condition which
shortens battery life). Application programs have been
observed to send INT6h commands as few as seven
times per timer tick and as many as 250 times per timer
tick, both extremes occurring in programs which were
in a repetitive loop during which the microprocessor
could be turned off. However, programs which are
performing other useful operations such as writing to
memory have been observed to make as many as 10
INT16h calls per timer tick, and would be erroneously
shut off by an algorithm which used the criterion of
requiring only seven INT16h calls per timer tick.
FIGS. 7A through 7G show results of these applica

tion program observations. FIG. 7A shows a graph of
many observations of a Lotus 123 program's use of
INT16h calls when the processor is operating at a 1.3
MHz rate and timer ticks are occurring every 54.9 milli
seconds. FIG. 7A accumulates observations of the
Lotus 123 program's behavior over approximately a
1-minute period. During the first approximately 15 sec
onds after the observations begin, the program is per
forming a calculation during which it looks for key
presses with INT16 calls only twice during one of the
timer tick periods. Between 15 seconds and 19 seconds,
the program looks for key presses about 7 or 8 times
between timer ticks. At about 19 seconds, the program
ceases looking for key presses for a short time while
other computations are performed in response to a key
press. Such activity occurs again at approximately 23
seconds. At approximately 24 seconds a lengthier calcu
lation prevents INT16h calls for key presses. Thus the
microprocessor could have been off for most of the time
between 15 and 23 seconds. An algorithm for saving
power must recognize this possibility. It is clear from
the general shape of the graph of FIG. 7A that the
frequency of INT16h calls has only a few values, pre
dominantly zero and 7 or 8. (The value 7 or 8 probably
represents the same loop, and the difference of one
simply represents round-off error.)
As shown in FIG. 7B, the same Lotus 123 program

running at a 7 MHz clock speed repeats its loops more
frequently between timer ticks of 54.9 milliseconds.
Thus, the INT16h calls almost always occur approxi
mately 40 times per timer tick when they occur at all,
the vertical lines indicating zero times per timer tick
when active computing is being done. Most of the
graph represents time when unnecessary power is being
consumed needlessly running the microprocessor, and
for which an algorithm is desired for turning off the
microprocessor. FIGS. 7C and 7D similarly show for
"Alphaworks” results of application program observa
tions respectively running at 2 MHz and a 3 MHz clock
speed. FIGS. 7E, 7F, and 7G similarly show for
"Grandview' results of application program observa
tions respectively running at 2 MHz, 3 MHz and 7
MHZ.
A more sophisticated algorithm improves the power

management ability of the present invention. One such

5

O

15

25

35

45

50

55

60

65

22
algorithm which allows hardware to detect most loop
activity which could be eliminated by turning off the
microprocessor and which does not cause the micro
processor to be turned off when useful computation is
occurring is to compare the number of INT16 calls
during one timer tick interval to the number of INT16h
calls during the previous timer tick interval. If these
numbers are the same (or differ by only one count), it is
likely that the computer is in a loop and that the micro
processor can be turned off. Finding two time periods
with the same number of INT16h calls in which the
number is greater than a minimum value of about 4 is an
algorithm for turning off the microprocessor which is
much preferred over providing an absolute count which
must be exceeded during a timer tick interval. Another
algorithm which gives more assurance that the micro
processor will not be erroneously turned off, and which
uses only a small amount of additional power, involves
requiring a string of three intervals during which the
number of INT16 calls differs by no more than one.
The computer, however, need not be fully turned off.

In the case of an application program waiting for a
keypress, all sections of the computer are turned off
with the exception of the video display. The computer
is then in display mode and appears to the user to be
continuously on, as keys are periodically pressed, or
communications are sent and received. If there contin
ues to be no activity for a longer given time, i.e., prefer
ably approximately four minutes, then the video display
is turned off and the computer is in the off mode.

In accordance with the invention, the problem of
coping with badly behaved applications programs is
solved by providing hardware circuitry to notify the
control program software if an application is taking
over control of the ROM BIOS keyboard services. This
method is accomplished by having the hardware moni
tor a particular fixed memory location as defined by the
conventional IBM PC-XT specification used for the
software interrupt to access keyboard services, and
alerting the ROM BIOS if this occurs.

FIG. 6 Flow Chart for Power Management
The power management control program in accor

dance with the invention is illustrated in flow chart
form in FIG. 6. As shown in FIG. 6, at the top of the
flow chart the system is in the compute mode 10. The
computer can be put into compute mode by a variety of
events. The novel control program first monitors the
computer circuitry to determine what caused a non
maskable interrupt 102 (NMI) to place the computer
into compute mode 10. This part of the control program
is referred to as the NMI dispatcher 134. In the case of
the power management portion of the control program,
there are five activities which the NMI dispatcher 134 is
looking for.
These five activities are, in the preferred embodiment

of the invention, software interrupt 122 (i.e., INT16h)
from trap 124 (see FIG. 4), timer tick interrupts 100 (see
FIG. 3), interrupt 116 from the activation of the on/off
switch 114 (see also FIG. 3) keyboard interrupts 104
(INT9) (also see FIG. 3) and screen write interrupt 176
(i.e., INT10). The on/off switch 114 is described above.
The timer tick interrupt 100 as described above is pro
vided every 54.9 milliseconds (i.e., 18.2 times a second)
and is programmably switchable as described above to
approximately 1 tick per minute.

Keyboard interrupts 104 are generated by the key
board control circuits 106 of FIG. 3 each time a key is

5,428,790
23

pressed, released, or held long enough for it to repeat.
In accordance with a preferred embodiment of the in
vention, the keyboard control circuits 106 (which in
conventional systems are provided by a separate de
vice) are provided in an ASIC in the computer. Prefera
bly both the scanning and decoding of the keyboard
signals are performed in this ASIC.
Response to interrupt INT16h trap 122 operates as

follows: after receipt of interrupt INT16h trap 122, the
control program determines what function the software
program was trying to accomplish when it issued the
INT16h instruction. Two possible functions are first,
waiting for a keypress 140 and second of all, obtaining
keyboard status 142. In the case of waiting for a key
press 140 the system can immediately go to display
mode 16, in which the display is on and the other hard
ware elements of the computer are off. This is what
happens when the computer is not computing and typi
cally waiting for the user of the computer to type. In the
case when INT16h is used to obtain keyboard status
142, the control program increments a counter 144. This
counter 144 counts the number of times the keyboard
status 142 was checked using the INT16h instruction
since the last timer tick 100. The point is that if the
application program is in a low intensity processing
mode or a zero intensity processing node, the keyboard
status 142 will be checked many times. Thus within a
short time period there will be many counts accumu
lated in the counter 144. This usually indicates that no
significant amount of processing is going on. As men
tioned earlier, however, it is preferable to compare the
number of counts since the last timer tick 100 to the
number of counts in the previous interval, since differ
ent software programs have widely different rates of
using the INT16h interrupt to check keyboard status.
Thus after updating the counter at step 144, the control
program returns the computer to compute mode 10 in
which the application program proceeds with its next
instruction. It is possible that many NMI 102 interrupts
will turn out to be INT16h interrupts 122, that they will
be status requests 142, and that the counter will again be
updated, returning the computer to compute mode.
After some period of time, however, an NMI 102 inter
rupt will be found by NMI dispatcher 134 to have been
caused by a timer interrupt from a timer tick 100. This
timer interrupt 100 causes the computer to enter a part
of the program for determining whether it is safe to turn
off the microprocessor and halt the program being exe
cuted without interfering with functions the user wants
to perform.
The following describes the operation of the control

program with regard to the timer tick interrupt 100.
After the NMI dispatcher 134 determines that the inter
rupt is a timer interrupt 100, the control program at 148
determines whether the computer is in the display (low
power) mode 16 or off mode 12. At this point, if the
computer is in the display mode 16, the control program
at 150 determines if the computer has been in the display
mode 16 for a predetermined period of time such as
greater than two to four minutes. If the control program
determines the 37 computer was in off mode 12, it re
turns the computer to off mode 12. If the system is in the
display mode 16, but at 150 has been in that mode for
less than a time of approximately four minutes, then the
system remains in the display mode 16. If the computer
has been in the display mode 16 for a period of greater
than four minutes, which means that a key press or
other activity which moves the computer into compute

O

15

20

25

30

35

45

SO

55

65

24
mode 10 has not occurred for four minutes, the control
program puts the system into the off mode 12. The off
mode 12 described above with regard to FIG. 1 is a
state in which the display is off, the microprocessor is
off, the other sections of the computer are off, and the
timer is slowed down to approximately 1 timer tick per
minute. In off mode, the timer interrupts 100 (see FIG.
3) cycle the control program of FIG. 6 through the
compute mode 10 and back to the off mode about once
per minute.

If the timer interrupt 100 causes the control program
to determine at step 148 that the computer is not in a
low power mode (thus it is in compute mode, communi
cation mode, or DMA mode as shown in FIG. 1), then
at step 154, the INT16h counter is examined to deter
mine if the number of INT16h interrupts since the last
timer interrupt 100 is greater that a minimum number. A
presently preferred minimum number is five. If this
minimum number such as five is exceeded, the control
program makes a comparison at step 184 between the
number of INT16h interrupts in the last timer tick inter
val just completed and the number of INT16h inter
rupts in the previous interval. Alternatively, the control
program may compare the number of INT16h inter
rupts in three succeeding intervals. A counter stores the
number of INT16h counts in several successive timer
tick intervals and the control program continues to
make this comparison once for every timer interrupt
100.

If at step 184 the control program determines that the
number of INT16h interrupts in the INT16h counter
differs from the number in the previous interval, indi
cating that some less repetitive activity is occurring,
even if the number of INT16h interrupts is greater than
the minimum number (such as five), the control pro
gram will not turn off the microprocessor clock and
stop the executing application program, but will move
to step 181.
Regarding step 181, a power saving device described

more completely in copending application Ser. No.
07/374,514, now U.S. Pat. No. 5,021,679 issued on Jun.
4, 1991 incorporated herein by reference, switches the
system power supply voltage from a low voltage in the
range of 2 to 3 volts to 5 volts only when the computing
requirements are intense. The higher voltage causes the
voltage controlled oscillator which drives the micro
processor clock to run at a faster speed, in the present
case to speed up from about 2 MHz to about 7 MHz.
When the faster computing speed is not needed, the
computer operates at lower power and lower speed,
thereby saving considerable power. When the com
puter first enters compute mode 10, the voltage is at the
lower level. Step 181, which is reached every time a
power management timer interrupt 100 occurs deter
mines whether the computer has been in compute mode
more than R seconds, presently preferred to be 1.5
seconds. If the computer has been in compute mode 10
less than 1.5 seconds, the program returns control to the
application program in compute mode 10 and the sys
tem power supply remains at the low voltage. If the
computer has been in compute mode more than 1.5
seconds, the control program at step 183 activates cir
cuitry which increases the voltage of the system power
supply to 5 volts. This in turn causes the voltage con
trolled oscillator which drives the microprocessor
clock to speed up, giving the user quicker response to
heavier computing requirements.

5,428,790
25

If the number of INT16h interrupts in two or three
successive intervals differs by not more than a count of
one (for round-off error), then at step 184 the tolerance
is determined to be OK (the activity is determined to be
repetitive).
There are application programs which use an

INT16h call fairly frequently intermixed with other
computations which should not be halted. Some of
these uses will produce INT16h calls in such a regular
pattern that the above algorithm for comparing INT16h
calls during two or three successive timer tick intervals
will find identical numbers of calls and would errone
ously turn off the microprocessor in the midst of an
operation if no other tests were made. Examples of
these activities are writing to the screen, writing to mass
storage memory, and sending or receiving from a con
munications port. In order to avoid erroneously turning
off the computer during a computation, the control
program checks for these activities. Variations of the
control program check for different specific activities.
The control program shown in FIG. 6, after determin
ing at step 184 that two or three successive intervals
have the same number of INT16h calls, checks at step
186 to see if a screen write command (a video access
command) has been given since the last occurrence of
timer interrupt 100. A variation on the block diagram of
FIG. 6, discussed in connection with FIG. 4, includes
additional tests for disk or other memory access and
communications port access, with the answer to each
question being "no' before the program moves to the
low power display mode 16, in which the microproces
sor clock is off and the executing computer program is
halted. A further variation provides for forming a table
of frequency of INT16h calls made by different pro
grams and turning off when the number of INT16h calls
matches the value in the table. Similarly, at the begin
ning of an application program, the control program
can begin to form a history of INT16h call frequency
and start responding to a particular frequency of
INT16h calls when the history indicates the current
frequency is equal to the stable value. When the micro
processor clock is off, the transistors necessary for mov
ing quantities into and out of memory and other such
hardware operations necessary to respond to software
commands are halted, and use of power is markedly
reduced.

If the control program determines at step 186 that the
application program is writing to screen (video access),
or in another variation writing to mass memory, reading
from mass memory, writing to the communications port
or reading from the communications port (or other tests
which may be preferred in a particular embodiment),
the control program returns to compute mode 10, and
the application program takes over again.

Interrupt 116 is generated by the on/off switch 114
(see FIG. 3) as described above. When the user acti
vates the on/off switch, then an NMI 116 is generated.
The activation of the on/off switch means, as deter
mined at 156, either that the computer is on and is being
turned off or that the computer is off and is being turned
on. Thus as shown at step 156 if the computer status is
that it is on, activating the switch puts the computer
into the off mode 12. If the computer is off at 156 then
activating the on/off switch causes the timer tick circuit
to be reprogrammed at 158 to provide timer ticks every
54.9 milliseconds. (As stated above, other intervals may
be selected.) The memory locations associated with
keeping time of day information are updated to reflect

10

15

25

30

35

40

45

50

55

60

65

26
the transition to timer ticks every 54.9 milliseconds
instead of once per minute, then the computer is re
turned to the compute mode 10. Updating of the time of
day information is performed by reading a counter
which counts and accumulates the number of 54.9 milli
second time periods which have passed since the
counter was last cleared. This counter preferably clears
itself once per 1024 time periods (56.2 seconds).
The next interrupt relevant to the power manage

ment system is the keyboard interrupt 104, preferably
INT9. As described above interrupt 104 is generated by
the keyboard control circuitry 106 (see FIG. 3) when a
key is pressed or released. Upon generation of a key
board interrupt 104 the above described INT16h
counter 144 is reset at step 160. After this the key input
is processed at 162 by the computer and control is re
turned to the application program in compute mode 10.
As shown by the doted lines 164, 166, both the off mode
12 and the display mode 16 return control to the NMI
dispatcher 134 periodically as determined by the system
timer tick interrupt 100.
The last interrupt relevant to the power management

system embodiment of FIG. 6 is screen write INT10
interrupt 176. INT10 is a standard BIOS call to cause a
screen write. The INT10 interrupt causes the BIOS to
access the screen, as was done by the video access call
tested by hardware in block 186 discussed earlier. An
other embodiment, not preferred, responds to the
INT10 call but does not detect at 186 a direct video
access. Indeed, if direct video access is detected at 186,
detecting the INT10 call is not necessary, but is pre
ferred to give faster response before waiting for timer
interrupt 100.

Finally, manual means are also provided for putting
the computer into computer mode 10. There are pro
grams which will likely be erroneously shut off by the
power management system of the present invention if
the embodiment selected has parameters which produce
significant power savings. In order to allow such pro
grams to run successfully, the computer preferably
includes means, for example a combination of key
strokes, for disabling the power management feature of
the present invention. This disabling means is preferably
used only when the user has encountered a problem
with the power management system. In one embodi
ment a key press or key combination causes power
management to be overridden. Overriding is accom
plished in this embodiment by disabling the timer inter
rupt 100 generated by timer 98.

In accordance with the invention, the control pro
gram as described above is preferably written in assem
bly language and is installed in ROM associated with
the computer microprocessor. This preferred assembly
language is that which is conventionally used for the
Intel 8086 family of microprocessors.
A control program in accordance with the invention

is also shown in a Microfiche Appendix to the above
referenced U.S. patent application Ser. No. 07/375,721,
entitled Portable Low Power Computer, now aban
doned. Parts of the program relevant to the control
power management function are shown at pages 84-108
of the program.
The above description of the invention is illustrative

and not limiting. Other embodiments of the invention
will be apparent to one of ordinary skill in the art in the
light of the invention. The invention is not limited to
IBM PC XT compatible computers or to IBM PC com
patible computers. Also, the particular hardware and

voltage level is in the range of about 2 to 3 volts, and the
second supply voltage level is at least about 5 volts.

5,428,790
27

software embodiment of the invention as described
above are not intended to be limiting, but illustrative. In
other embodiments of the invention more or less of the
functions are provided in hardware and/or software.
We claim: 5
1. A method for operating a processor for operating

at a plurality of clock frequencies, comprising:
providing clock signals to the processor, the clock

signals being at a frequency determined by a vari
able supply voltage level;

providing a first supply voltage level, thereby operat
ing the processor at a corresponding first clock
frequency;

determining a duration of elapsed time that the pro
cessor has been operating at the first clock fre
quency; and

upon determining that the duration of elapsed time
exceeds a predetermined amount, providing a sec
ond supply voltage level higher than the first Sup
ply voltage level, thereby operating the processor
at a second clock frequency higher than the first
clock frequency.

2. The method of claim 1, wherein the first supply

10

15

25

3. The method of claim 1, wherein the second clock
frequency is more than three times greater than the first
clock frequency.

4. The method of claim 1, further comprising the step
of providing a third supply voltage level equal to about
zero, thereby stopping operation of the processor.

5. The method of claim 4, wherein the processor is a

30

part of a computer including a manual input device, and
wherein the step of providing a third supply voltage
level comprises:

35

determining a duration of time that no computer
activity or manual input device activity has taken
place; and

when the determined duration of time exceeds a pre
determined amount, providing the third supply
voltage level.

6. The method of claim 1, further comprising, prior to
the first step of providing:

stopping the processor by supplying a clock signal of 45
about zero frequency to the processor, while main
taining power to a display device connected to the
processor.

7. A power system for a computer system having a
processor, the processor operating at at least two clock
frequencies, each clock frequency being associated with
a particular supply voltage level for clocking the pro
cessor, comprising:

a supply voltage circuit for generating at least two
different supply voltage levels for clocking the
processor, a first supply voltage level being less
than the second supply voltage level;

means for determining a duration of elapsed time the
processor has been operating at a first clock fre
quency associated with the first supply voltage
level; and

means for controlling the supply voltage circuit to
supply the second supply voltage level for clocking
the processor in place of the first supply voltage
level when the duration of elapsed time exceeds a 65
predetermined amount, the processor thereby op
erating at a second clock frequency associated with
the second supply voltage level, and wherein the

50

55

60

28
second clock frequency is higher than the first
clock frequency.

8. The system of claim 7, further comprising a timing
signal generator operatively connected to the supply
voltage circuit for receiving the at least two different
supply voltage levels, and having an output terminal
connected to the processor for providing at least two
clock signals to the processor, a first clock signal being
at the first clock frequency of the processor and a sec
ond clock signal being at the second clock frequency of
the processor.

9. The system of claim 8 wherein the timing signal
generator includes a voltage controlled oscillator.

10. The system of claim 7, wherein the computer
system further includes a display device connected to
the processor, the power system further comprising
means for stopping the processor by supplying a clock
signal of about zero frequency to the processor while
maintaining power to the display device.

11. A method for reducing power consumed by a
computer having a processor for executing at least one
user application program and having a manual input
device for inputting data to the processor, the applica
tion program generating processor interrupts for re
ceiving data at the processor from the manual input
device, comprising the steps of:

executing the application program at a first operating
frequency of the processor;

during the execution of the application program,
counting a first number of the processor interrupts
generated by the application program during a first
time interval of predetermined duration;

then counting a second number of the processorinter
rupts generated by the application program during
a second time interval of equal duration and subse
quent to the first;

if the first number is within a predetermined value of
the second number, then determining if the proces
sor is executing a predetermined activity; and

if the processor is executing the predetermined activ
ity, then operating the processor to continue exe
cuting the application program but at a second
operating frequency lower than the first operating
frequency.

12. The method of claim 11, further comprising:
supplying voltage dependent clock signals to the

processor, thereby determining the operating fre
quency of the processor;

providing a first voltage level, thereby causing supply
of clock signals of the first operating frequency to
the processor; and

providing a second voltage level lower than the first
voltage level, thereby causing supply of clock sig
nals of the second operating frequency to the pro
CSSO.

13. A method of operating a computer having a dis
play device, a manual input device, and a processor, the
processor operating at at least two clock signal frequen
cies, comprising the steps of:

stopping the processor by stopping supply of a clock
signal to the processor, while maintaining power to
the display device and to the manual input device;

then, resuming operation of the processor by supply
ing a lower of the two clock signal frequencies to
the processor;

determining a duration of elapsed time that the pro
cessor has been operating at the lower of the two
clock signal frequencies; and

5,428,790
29

then, supplying the higher of the two clock signal
frequencies to the processor in place of the lower
of the two clock signal frequencies if the elapsed
time exceeds a predetermined value.

14. A power supply system for a computer system
having a display device and a manual input device con
nected to a processor, the processor operating at at least
two clock signal frequencies, comprising:
means for stopping supply of a clock signal to the

processor while maintaining power to the display
device and manual input device, thereby stopping
the processor;

O

5

25

30

40

45

SO

55

60

65

30
means for supplying a lower of the two clock signal

frequencies to the processor, thereby resuming
operation of the processor;

means for determining a duration of elapsed time that
the processor has been operating at the lower of the
two clock signal frequencies; and

means for supplying the higher of the two clock sig
nal frequencies to the processor in place of the
lower of the two clock signal frequencies if the
duration of elapsed time exceeds a predetermined
value.

ck ck cic ck ck

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 5428,790 Page 1 of 1
APPLICATIONNO. : 08/134341
DATED : June 27, 1995
INVENTOR(S) : Harper et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Item (75) Inventors:

Delete “Culimore
Insert --Cullimore--

Signed and Sealed this
Eighth Day of January, 2013

David J. Kappos
Director of the United States Patent and Trademark Office

